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The Air Force Office of Scientific Research (AFOSR) contract is concerned
with experimental and theoretical investigations on electrically conducting

aerosols for electromagnetic obscuration applications. Presented below is the

progress made in the theoretical analysis of aerosols consisting of magnetic
(Fe,Co,Ni) particle chains in air. Particular attention is given to the
effects of an external magnetic field on the chain equilibrium and the

coagulation dynamics.

I. A theory'of the diffusion of macroscopic, magnetic particles (sus-
pended in gaseous or liquig media) in density and magnetic field gradients has
been developed from first principles (Fokker-Planck equation), in which the
influence of the random, fluctuating magnetic fields, produced collectively by
the magnetic dipole particles in their therma! motions on the diffusing parti-
cle, is taken into account in a self-consist;nt way. As an application, the
steady-state boundary-value problem for the diffusion of magnetic grains in
the inhomogeneous magnetic field of an adsorbing sink dipole and an external,
homogeneous magnetic field has been solved by means of a stream and Green's
functions approach. The coagulation coefficient for magnetic dipole particles
in the presence of an external magnetic field have been derived and applied to

the coagulation of magnetic grains and the formulation of magnetic chains in

magnetic serosols with an external magnetic field.

-------
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2. 1dealized statistical calculations of chaining in a dilute suspension
of macroscopic magnetic particles in a rarefied gas have been made in the

presence of an external, homogeneous magnetic field. The primary colloidal

particles are assumed to be spherical, of the same size, and have saturated

magnetic moments. The magneto-chemical potentials and the association-
dissociation equations have been derived for chains consisting of v > 1 mag-
netic grains as a function of the temperature T, the density N,, of chains,
and the homogeneous magnetic field .EL. High field intensities B, are
shown to shift the chain length distribution F = F(v) in favor of long chains,
v » 1, whereas increasing temperatures T move the maximum of this statistical
distribution to smaller chain lengths, v + 1. The theory appears to be in
qualitative agreement with experiments using an external magnetic field for
the alignment of chiins and their stabilization.
'

3. The artificial charging of wmagnetic aerosols 1is of interest with
regard to the reduction of the coagulation rate of Coulomb repulsion of the
magnetic particles. For this reason, the interesting properties of charged
particle gases and their fluctuating electric microfields were studied. It is
shown that (1) the collective electric fields act at distances larger than the
characteristic repulsion distance D = (l(‘l‘/lmnez)l/2 of 1like-charged
particles and (i1) the average collective electric field is Ey =
(lanK'l‘)l/2 for ideal gases of particles of the same charge e. Thus, in a
thermal equilibrium gas of 1like-charged particles, the longitudinal

microfields are considerably stronger than in a plaswma, since in the latter

the random electric fields of the negative and positve charges nearly




compensate each other. In addition, the interrelation between (average)

kinetic, interaction, collective field, and electric self-energies has been

calculated for charged particle gases.

4, Finally, an investigation on the reformulation of electromagnetic
theory for space applications was carried through in which the existence of
(1) a preferred frame of reference and (ii) an electromagnetic carrier for the
electromagnetic waves is taken explicitly into-account. In view of the exper-
imental discovery of the cosmic microwave background, (1) a preferred frame of
reference and (1i) an electromagnetic substratum can no longer be denied. The

latter work was supported only in part by the AFOSR.

A list of four papers follows. Two of them have been accepted for publi-
cation, while the others are still under review. We ask the AFOSR to accept
reprints of these publications as a final report. These papers are attached

as Appendices A through D, respectively.
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A. H. E. Wilhelm, "Dissociation-Association Equilibrium of Magnetic Particle

Chains in Homogeneous Magnetic Fields;"” Phys. Fluids (1985).

B. H., E. Wilhelm, ”ﬂifquion and Coagulation of Magnetic Dipole Particles in
Inhomogeneous Magnetic Fields,” Phys. Fluids (1985).

C. H. E. Wilheln, "g;atistical Distribution of Collective Electric Fields in
Charged Particle Gases,” Int. J. Electron. (1985) - to be published.

D. H. E. Wilhelm, "Covariant Electromagnetic Theory for Inertial Frames with

Substratum Flow,” Radio Sci. (1985) - to be published.




APPENDIX A

DISSOCIATION-ASSOCIATION EQUILIBRIUM OF MAGNETIC PARTICLE CHAINS
IN HOMOGENEOUS MAGNETIC FIELDS

H. E Wilhelm
Michelson Laboratory
Naval Weapons Center, China Lake, CA 93555

ABSRACT

An idealized statistical theory of chaining in a dilute suspension of macroscopic magnetic
particles in a rarefied gas is presented when an external homogeneous magnetic field is present.
The primary colloidal particles are assumed to be spherical, of the same size, and to have saturated
magnetic moments. The magneto-chemical potentials and the association-dissociation equations
are derived for chains ;:onsisting of v = 1 magnetic grains, in dependence of the temperature T, the
density N, of chains, and the homogeneous magnetic field B,. High field intensities B, are shown
to shift the chain length distribution F = F(v) in favor of long chains, v » 1, whereas increasing
temperatures T move the maximum of this statistical distribution to smaller chain lengths, v = 1.
The theory appears to be in qualitative agreement with oven experiments using an external

magnetic field for the alignment of the chains and their stabilization.
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I. INTRODUCTION .

It is known that external electric or magnetic fields shift the molecular dissociation
equilibrium in favor of the paraelectric, respectively, paramagnetic reaction products.!
y Statistical considerations show that a homogeneous magnetic field B, affects the thermal

ionization equilibrium a & i + e of a plasma if the quanta of the oscillatory electron (e)

motion in the B, field that corresponds classically to the electron gyration are of the order or
larger than the thermal energy, kw 2 KT, where w = eBy/m (e is the charge and m is the
mass of an electron).2 The ioniza'tion may be enhanced or depressed depending on whether
the atoms (a) are diamagnetic or paramagnetic.2 The electron (e_) and positron (e ,) densities .
of the thermal vacuum equilibrium e, + e. 5 2y (gamma quanta) are increased by a
homogeneous magnetic field B, (in favor of the paramagnetic or spin particles e+).3
Similarly, the electron-hole equilibria in solids are shifted towards higher electron and hole
concentrations by a homngeneous magnetic field, in particular in crystal structures with
small effective electron and hole masses.¢ However, these interesting physical effects are in
general quantitatively not very significant since the energy pB, of the magnetic moments p in
the magnetic field is small compared with the thermal energy, pB, € KT, except in the case of
suprathermal fields B, = KT/p, which can be generated through magnetic flux
compression.5.6 : t
Magnetic field effects on reaction equilibria are quantitatively extremely important if
the reacting species are macroscopic or colloidal particles that have paramagnetic or
ferromagnetic moments p » pg, which are large compared with the Bohr magneton pg =
. eht/2m = 9.274 X 10"** Am*. (An analopeous conclusion holds for paraelectric or ferroelectric
macroparticles in electric fields.) For the latter reason, the magnetic dipole energy pB, may 4
already be larger than the thermal energy, pB, > KT, for moderate magnetic field strengths
B,. so that the reaction equilibrium is significantly affected by the magnetic field. In
particular, this is true for colloidal suspensions of saturated paramagnetic or ferromagnetic
grains of radius a ~ 10® m, which associate to long chains consisting of v » 1 grains in the
presence of an external, homogeneous magnetic field. Dispersons of such colloidal chains of
electrically conducting, ferromagnetic particles (Fe, Co, Ni) in the atmosphere are of technical
interest as wide-band electromagnetic obscurants.
Herein, we analyze the association-dissociation equilibrium of chains a, consisting of

v spherical grains of radius r = a and saturated magnetic moment p, dispersed in dilute,

2
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homogeneous carrier gases of temperature T and a homogeneous external magnetic field B,. -
The corresponding reaction equations are

a Sa +a
v

vopte, L 2sv<v (1)

where a; = a and vy < ® is the maximum number of grains in a chain. If the grain material
is treated as a single, magnetic domain of magnetization M[A/m], the magnetic moment

(Am’] of a spherical grain of radius r = a is given by

P = 4niv61a’M - 2

In local magnetic field B, the potential energy of a grainis U = -p - B, & 0. The average
moment (p § ) of a grain in direction of field B, is in thermal equilibrium (p ;) = L(pBy/KT)
where L(ey) = cothe, -, = 1, ¢ P 1, is the Langevin function. Accordingly, {(p;) = p for
pB, » KT. The maximum potential energy of the dipoles in the magnetic field B, (relative to
the thermal energy KT)is by Eq. (2)

¢, = An(n/6)a’MB/KT = 4.17 x 102 a°MBIT . 3

Accordingly, ¢, ~ 10? for M = 10%4n A/m, B, = 1 Vsec/m*, T = 300°K, and a = 10° m. This
example shows that at standard temperatures T, the grains have their moment p aligned
parallel to B, already at moderate field intensities, (p ) = pliB,fore 1.

Since the magnetic field of a dipole p, is B, = -V(p,p; - r/4nr), the interaction energy
of two magnetic dipoles “i” amd “j” at a distance r = | r | apart is Uj; = (py/4nmr(p; - p, -
3c*(p; - r)(p; - r)) where py = 4n X 107 Vsec/Am. The average distance between grains is on
the order t ~ n*? where n{m °] designates their density. Accordingly, the average binary

interaction energy of the dipoles is
T,= 4np (6 a®M’wKT = 3.14 x 10" a*M*nT (4)

relative to the thermal energy KT. Hence, €; = 6.63 X 107" < 1 for M = 10%4n A/m, T =
300°K,a = 10® m, and n < 10°' m™. Thus, the grains behave like an ideal gas at T = 300°K
for densities n < 10°' m~. In the following it will be assumed that the grains and the chains

formed from them behave like a quasi-ideal suspension in the atomic (nonmagnetic) carrier
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gas. By Eq. (4) this requires t,; € 1, i.e., sufficiently low particle densities n and sufficiently -
high system temperatures T (below the Curie point).
Physically more complex is the calculation of the chain lengths equilibrium for

ferromagnetic grains dispersed at highest densities (n ~ 10® m™) in so-called ferromagnetic

B
¥
p fluids.” For this situation, an asymptotic theory for strongly nonideal interactions was
¥
B proposed (which breaks down in the ideal limit).? This nonideal theory has been shown to
disagree up to orders of magnitude with the experimental data.8
)
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Il MAGNETOACTIVE CHAIN EQUILIBRIUM

A homogeneous magnetic field B, aligns the magnetic dipole moments p; of the
grains a; and thus provides favorable conditions for the formation of linear particle chains
resembling rather rigid one-dimensional polymers. In thermal equilibrium, the chain
lengths Ly or the numbersv = 1, 2, 3, . . ., vp of grains a; in the v-chains have a distribution
F = F(v) determined by the maximum entropy principle.? The most elementary dissociation
(—») -association () reactions are those in which one grain a; is removed or added to a

v-chain from the collective 2 € v < vq:

(5

—
02—0. dl +al

Adding these relations yields a summary reactin equation, which describes the dissociation of
a v-chain into v grains a; and the formation of a v-chain by association of v grains aj,

respectively:

a =va, ,v=273,4, . ..,v (6)
v 1 2

This reaction is of particular interest since it relates the densities N, of the chains v 2 2 to
the density Ny of grains a;. The distribution N, of the v-chains observed in experiments is the
one with largest probability and, hence, maximizes the entropy of the colloidal suspension.
The latter condition leads to a statistical equilibrium equation for the summary reaction (6)
in terms of the magneto-chemical potential Q, of the v-chains and the magneto-chemical
potential ; of the grains a;,

Q =vQ, , v=23,4,...,v_ . (7)

v ] x

The magneto-chemical potentials of the chains v > 1 and the grains v = 1 are given for ideal

conditions by




-Q_ = KT{n(N A% + T/KT - InU RUBY) 8 -
where
A, = kigom KD'? (9)
vR=uVuR (10)
U® = sinh(p B /KT/(p B /KT) (11)

are the thermal DeBroglie waveiength of the v-chains of mass m,, the product of their
vibrational (V) and rotational (R) partition functions, and the orientational partition

functions of the magnetic moments py, of the v-chains. Obviously,
8 2n n (12)
U’ = J do J expip B c0s8)sin8d6
v 0 0 Y 0
where ¢ = < (p,, B,). The masses m, and moments p, are given in terms of m; and p;,

respectively,

m,=vmo, po= VP, . (13)

Substitution of Eq. (8) into Eq. (7) yields the fundamental dissociation-association

equations for v-chains in a homogeneous magnetic field B,:

ﬁ sink(p B /[KT) 1 p B, K3

v-1 A?
N = N*y32R l ap(_‘)_
vl P.(sinh(p B /K" ! KT (20m k¥ KT

v=234..,v (19
where
At =mve —¢, »[popl/4n(2rxl) ] .
R = UYRIUTRY ~10° (16)
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The energy At, required for the dissociation of a v-chain into v grains is of the magnitude -
At, ~ v10" eV. The values of AZ, can be calculated (v-body problem) or measured
experimentally. Equation (16) holds in view of the macroscopic nature of the particlesv = 1.
Equation (14) represents v, - 1 equations for the determination of the v» unknown
particle densities Ny, N2, N3, .., N, _. A complete system of equations is obtained by adding

the equation for the conservation of the total grain density N,

v
z va=N _
v=l

Substitution of Eq. (14) shows that Eq. (17) represents a polynomial of order v for the

determination of the grain density N,

Ve (18)
D CB DN =N
v=l
where
p, sinh(p B /KT) | p,B B3 v-1 At
- J¥2.vR 1 Voo 1o _v

P, (sinhp B /KDI" | KT 2nm KTY*?
v=234,. . .,v, ;Cl(Ba,T)ll . (19)

With N calculated as the positive root of Eq. (18), the chain densities follow from Eq. (14) as
-\'v = C\'(BOo T)Nl v.

In applications, one is mainly concerned with suprathermal magnetic fields for which
B »>KTip, : poo/KT> 1. (20) l

For such strong magnetic fields, Eq. (19) reduces to the dissociation-association equation

3 .o ~
N .~.N"2~'-lvu2,.vn p,B, h ! (f\_)
AR " KT @nm kY KT
V=234 v, B > KTp, 21 4

7 ‘
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p,B R v-1 4t
C(B ., T =2"" 2R 0 I (_)
v o = v f" KT (2ﬂleT)M ep KT

v=234,. ..,v ;Bo » KT'/pl . 22)

Equation (21) provides interesting proportional relations that exhibit the main

magnetic field (B,) and temperature (T) dependences of the chain densities N,

N, NfB;r‘” apm@xn

N, NIB*T 1% exp(aT/KT)

N = NBT~'? explaTyKT), B, » KTip,. (23)

N, «NB~'T=%V =12 gp(az /K

It is seen that an increase of the magnetic field B, shifts the distribution {N;, Np, .., N, }in

favor of the large chains, v = v, whereas an increase in the temperature T shifts the

distribution {N,} in favor of the short chains, v = 1.7in view of the exponential T-dependence

in Eq. (23) and Ae, > Ac,_1, a temperature increase has a particularly strong destructive

effect on the long chains.

8 .
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HI. CONCLUSIONS .

The statistical theory presented should be considered a first step towards the
qualitative understanding of the dissociation-association equilibrium of magnetic colloid
chains in an external, homogeneous magnetic field, presumed that the primary grains formed
originally a sufficiently dilute suspension in a nonmagnetic gas. The favorable effect of the
external magnetic field on the chain formation and the shifting of the chain lengths
distribution F(v) towards larger c'hain lengths v has been observed experimentally. However,
quantitative experimental data on magnetic chain lengths distributions in aerosols, which
could be used for comparison with the theory, have apparently not yet been published. The
experiments also indicate that chains and grains coagulate to large clusters which “fall out”
in the gravitational field when the magnetic field is switched off. The rapid coagulation in the
absense of a (sufficiently strong) magnetic field can be reduced by spraying the macroscopic
particles with electric charges (Coulomb repulsion).10

In order-to achieve a quantitative understanding of the chain equilibrium in an
external magnetic field, several (difficult) problems remain to be solved rigorously. The
dissociation energies AT, = ve) - ¢, are to be calculated from the v-body problem of a v-chain
made up of extended magnetic dipoles (grains of radius a > 0). Based on this v-body
dynamics, the oscillatory and rotational partition functions of the v-chains have to be
determined (even though these degrees of freedom of macroscopic particles are only poorly
excited at temperatures below the Curie point). Finally, to render the theory applicable to
higher grain densities, the nonideal interactions between chains and grains would have to be
taken into consideration in the evaluation of the statistical chain equilibrium.

In connection with the chaining phenomenon, various other interesting effects could
be investigated theoretically. For example, it would be important to understand the effect of
primary grains that have not the same size but a size distribution. Furthermore, it would be
interesting to evaluate the chain lengths distribution for primary grains that carry an
artificial electric charge. Already these few examples indicate that the research on

magnetically active colloids offer significant opportunities for further contributions 19
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APPENDIX A: Alternative Derivation .

It is instructive to derive the dissociation-association equation {Eq. (14)] also from the

reaction

v=2,3,4,...,v_, (A-1)

v_l + al ’ 1] ’ ’ @®
where
Q =0 +Q

v v-1 |

v=2,3,4,...,.v_, (A-2)

in statistical equilibrium. Substitution of the magneto-chemical potentials [Eq. (8)] into Eq.

(A-2) yields (after some alegebra) the "one-grain” dissociation-association equation:

Nv = DV(BO, an-lNl ,» v=2,3,4,...,v,, (A-3)
where
D@E.T-= vn( v )3’2 P,y sinh(p B /KT)
oo T8 NTTY ) Tp sinhip,_ B /K Tisink(p B JKT)
P, mlap[r‘ +%, - TVKT|, v=2,3,4. , (A-4)
KT @2am KT)
and
g =uRu¥R Utk (A-5)

Eq. (A-3) represents a recurrent relation that gives, by elimination, the "v-grain”
dissociation-association equation:

(A-6)
N, N"HD(B n,v=234.. v,
v=2
where \
M PlBo v?‘-cv (A-7)
D (B, T) = G [sinh(p B /KT~ V-V [ ' )
J:lz Ve ! o KT @nom KT)‘W KT
and
M v \¥2 P._, sinh(p B /KT) (A-8)
X X
G = v|;|28\. (\._, ) b,  Sinkp._ BKD)
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since
c (A-9)
Zﬁ:-l+cl—ev)= Ve — 8
o v=2
Factorization of the finite product (A-8) and evaluation of the individual products gives
p sinh(p B /KT) (A-10)
G =f xv¥x - x —_—
vy, p, smh(plBo/K n
since
[Te,=1, (A-11)

by Egs. (A-5) and (16). Combining Eqs. (A-6), (A-7), and (A-9) resuits in the dissociation-

4 association equation:
p, sink(p B/KT | p.B X v-1 Ve, —T. -
szN:f:'nvm_l v 0 170 ml ap( 1 v)'
> P, (sinh(p B /KTH' | KT @2nm KT) kT
W
' v =2,3,4...v. . (A-12)
Equation (A-12) is identical to Eq. (14) derived from the summary reaction [Eq. (6)} and the
: . statistical equilibrium relation (7) . The derivation of Eq. (14) is apparently simpler thar
A that of Eq. (A-12). The identity is necessary for physical reasons.
)
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APPENDIX B

DIFFUSION AND COAGULATION OF MAGNETIC DIPOLE PARTICLES
IN INHOMOGENEOUS MAGNETIC FIELDS

H. E. Wilhelm

Michelson Laboratory
Naval Weapons Center, China Lake, California 93555

ABSTRACT

A theory of the diffusion of macroscopic, magnetic particles (suspended
in gaseous or 1liquid media) in density and magnetic field gradieants {is
developed from first principles (Fokker-Planck equation). The influence of
the random, fluctuating magnetic fields, produced collectively by the magnetic
dipole particles in their thermal motions on the diffusing particle, is taken
into account in ; self-consistent way. It {s shown that the anisotropy in the
particle diffusion, caused by the coupling of translational and rotational
degrees of freedom (Magnus effect), is small in most physical situations. As
an application, the steady-state boundary-~value problem for the diffusion of
magnetic grains in the inhomogeneous magnetic field of an adsorbing sink
dipole and an external, homogeneous magnetic field is solved by means of a
gstream and Green's functions approach. The coagulation coefficient for
magnetic dipole particles in the presence of an external magnetic field is

derived. The results are discussed with regard to the coagulation of

magnetic grainas and the formation of magnetic chains.

.....




........

INTRODUCTION

The physical behavior of colloids formed from ferromagnetic grains

suspended in magnetically inactive liquids has recently been investigated

exper:imentallyl'2 and theoretically.a"‘ Under the influence of a uniform

external magnetic field, the magnetic grains tend to associate in the form of

long chains 1if the grain density and the temperature of the 1liquid are
5,6

sufficiently low.

Based on the Fokker~Planck equation, we develop an analytical theory of

the thermal diffusion of magnetic dipole particles in magnetically passive

fluids F (gases or liquids) when an inhomogeneous magnetic fleld B(r,t) 1is

present. A novel diffusion equation is derived and applied to the diffusion

of magnetic grains in the inhomogeneous field i;(-r.) of an "absorbing” \

magnetic dipole when a homogeneous external field i; is present, The 2

The coagulation

corresponding boundary-value problem is solved analytically.

of dipole particles, which interact through their magnetic self-field, is

discussed in dependence of the external field I-!;.

Ferromagnetic grains have a typical radius a ~ 10~3 a. 1If the grain

material is treated as a single magnetic domain of magnetization M[A/m], the

magnetic moment [Am?] of a spherical grain of radius r = s is given by

p=bn(n/6)aM . (1)

Let these grains be dispersed in a nonmagnetic (u,) carrier medium (F) of

temperature T. In a local magnetic field B, the potential energy of a grain

1
o U=-p820 . (2)
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The average moment <py> of a grain in direction of field B is in’ thermai

equilibrium .
(p'> = L(e)p, € = pB/KT , (3)
where
L(e) = cothe - ¢! T 1, e»1 (%)

is the Langevin function. Accordingly, <ps> = p for pB » KT. The maximum
potential energy of the dipoles in field B (relative to the thermal energy KT)
is by Eq. (1)

€ = 4x(n/6)a3MB/KT = 4.77 x 1023 a3uB/T . (5)

Accordingly, € ~ 102 for M = 10%/4% A/m, B = 1 Vsec/m2, T = 300°K, and a =
10-% m. This ex§mp1e shows that at standard temperatures T, the grains have
their moment P aligned parallel to B already at moderate intensities, <’p‘,.> =
P Bforedl.

Since the magnetic field of a dipole Py is -B°1 = -V(uo’ﬁ-?/lmr3),
the interaction energy of two dipoles "i” and "j" at a distance r.- l'r" apart

is (ug = 47 x 10~7 vsec/Am)

Ugy = (uo/lm)t"s[l;i';j - 3:‘2(51-?)(31 )] . (6)

The average distance between the dipoles is of the order T ~ n‘l/ 3 where
n[n”l designates their density. The average binary interaction energy of the
dipoles is by Eq. (6) of the order

€14 = bwuo(w/6)2a6blzn/l('r = 3,14 x 107abM2n/T )

relative to the thermal energy KI. Hence, €14 = 6.63 x 10°3 € 1 for M =

10%/4% A/m, T = 300°K, a = 10-% m, and n £ 102! n~3, Thus, the grains behave




BT

o - - -

like an ideal gas at T = 300°K for densities n < 102! o3, The maximun binar-:
interaction energy of the dipoles is (r = 2a) .

815 = uon(n/6)2M%a¥/Kr = 7.84 x 10!%u%a¥/T (8)

by Eq. (6). Accordingly, eij ~ 100 for M = 10%/4n A/m, T = 300°K, and a =
108 @m. Therefore, under typical conditions, some of the grains will always
coagulate as a result of their dipole attraction.

These numerical illustrarions indicate that the grains coagulate in their
attracting 1inhomogeneous dipole fields 3; to larger macroparticles, 1in
particular at low temperatures. In homogeneous external fields of moderate
intensity, B, < 1 Vsec/uz, the coagulation leads to long chains consisting
of up ¢to 108 grains which are aligned parallel to i;. In thermal
equilibrium, th& chain length distribution is determined by the respective

iemperature T and grain density n.
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KINETIC EQUATION - .

The diffusion of macroscopic ferromagnetic grains of radius a, mass wm,
moment of inertia I, angular momentum —L., and magnetic moment Pp in a
nonmagnetic carrier medium F '(gas or liquid), and an inhomogeneous magnetic
field B represents, 1in general, a physically complex problem. The main
complications are (i) the coupling of translational (_v.) and angular (:)
velocities of each grain (Magnus effect) and (ii) the precession of the
magnetic moment P about the‘ local magnetic field B in case of incomplete

alignment. The dynamical variables T, _J, and —p.of a grain are interrelated by

=14, p=vl (9)
where
dl/dt = p x B, dp/dt = yp x B (10)

determine the precession of T and D in B. The gyromagnetic factor is vy =
Po8/h (g = Landé ratio, p, = efi/2mg = Bohr magnetron), since the ferro-
magnetism of the grains 1is due to their electrons. The precession of T and p

about the direction of B occurs with the modiffed Larmor frequency7
w = ~wp, Wg* egB/Z?ne >0 . (1)
In view of Eq. (9)‘. _I... —p., and w are equivalent dynamical'variables for

any grain. The distribution function of the translational Vv and angular

velocities @ of the grains is, therefore, at any point (T,t) of the form

» > >
f = f(r,t,v,w) (12)
vhere
4=
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n=f [ £d3vdd, nvd>= [ [ vf ddv dd, ... (13)

are the macroscopic moments (grain density n, grain flux n<_\7>, ess) of
f(r,t,v,w). Changes of the distribution function are brought about by the
force of the inhomogeneous B field on the magnetic moment P, the translational
friction force (relaxation time t,), the Magnus force, and the friction torque

(relaxation time 1) on the grains:

Fp = pevB (14)
Fe = - awv/7, (15)
Foom - kmgv x (16)
8¢ = - 10/, . (17)

The equivalent fluid mass of the grain volume is my; = 4wa3nFmF/3.
The Magnus force [Eq. (16)] couples the translational v and angular & motions
of each grain such that a grain rolls aside if Vv is not parailel to o.%.9
The dimensionless correlation integral of "7 is of the order? (k) ~ 10°.
The frictional relaxation frequencies of Vv and w are in the free molecular

region,lo K= XF/a ?1:

r;‘ = (8/3)a’n (2m K1) 2(1 + ayn/8)/m (18)
! - (32/9)a*n(2m kD) 21 + apu/8)/T (19)
-5

P T P T LT S St S e A R A Bah0 S A

e \\l's

L



where 0 < a; 5 < 1 are accommodation coefficients 10 (mF = mass, n_ =

density of carrier fluid). In gases with a m.f.p. Ag ~ 107 m, the

Knudsen number is K~ 10! for grains with radii a ~ 10°% m. The corresponding

Stokes formulael?® (nF = viscosity of carrier fluid) hold in the continuum

region, K= AF/a €1

! - 61mFa/m. 1= 8nnFa3/I . (20)
1 2

For obvious physical reésons, the distribution function f(r,t,v,w) of the
grains satisfies a continuity equation in tt-te {t,T,V,wu] space. Consideration
of the forces (14)-(16) and the torque (17) on the balance of grains which
leave and enter the volume element dV = d3f d¥ d35 at the point (F,¥,3) in
the time dt +» 0, yields the fundamental kinetic equation for the distribution

function £(T,t,V,w):

A 3 o+ pevB 3 g

P S (vE) ¢S (T )+ T3 e (8E) -
r v

at 9 dw
R R TC - E Y 1 ISR I TOMIE I PSR PER
K m (VXw) ¢ T2+ 17" TL e v+ T, + 17 T, . w+T "o
" e 1o ® 2 3 Toad
where
> + » +o » 3 .3° +
B=yH+y, [ [ p£dvd, v.B=0 , (22)
- -0
»> » »>
H= -7, V xH =20 . (23)
and
+to +o > P 'S
92 = 9. | f p f div di, . (24)

S0 SN




The Fokker-Planck equation (21) and the Poisson equation (24) represent_a

system of integro~differential equations for the determination ‘'of the

distribution function f(r,t,v,w) and the potential &(T,t) of the

self-consistent magnetic field —H.(?,t), which has 1{ts sources 1in the

distributed dipoles P. The angular acceleration & is defined by Eq. (10).

Equations (10), (22), and (23) are auxiliary equations, assuming the absence

of electric currents (V x H =0).

In Eq. (21) the interaction terms with coefficients «, r"l, and 1'2'1 are

responsible for the relaxation of f. In an external magnetic field -ﬁ,, the

avs a & & A W

thermal equilibrium distribution 1is given by (p = yIw)

1 >, 1 >, + >
fo = Colng, Ty, By) exp[=(7 mv 7 Iw® - peBy)/KT] (25)

if the nonideal - field effects due to the dipole interactions are neglected

(Co, = normalization constant). By Eq. (25), the average energies of

translation and rotation are in thermal equilibrium T,

-»2 -»2
<mv?/2> = KT,/2, <Iw?/2> = KT,/2 . (26)

For vanishing interactions of the grains with the carrier medium,

T1,2 * = the relaxation terms in Eq. (21) are absent. In this case,

Eq. (21) has elementary, stationary (3/3t = 0) solutions of the form

1 *, 1 *s + » >
fq = H(e), € =27 avé + 7 1w~ [, (p+¥B) o« dr , (27)
r
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.....................
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3g/3C = - H'(e)psVB, 3fg/dv = H'(e)mv : (28,

3e(btg) /0 = HU()I(n - vB) « 5=0 , (29)
where & = Yo x B is perpendicuiar to (& - vB) by Eq. (10). In Eq. (27), H(e)
is an arbitrary functional of ¢ and H'(e) = dH(e)/de. The Magnus term in
Eq. (21) vanishes since 3fg/3Vv 1 V.

In general, nonequilibrium solutions of Eq. (21) are obtainable by means
of perturbation theory. The‘ lacter assumes f = f, + £ for 0 < T1/2 < =,
with I?I € fo,. It should be noted that the kinetic equation (21) implies
that the grain component behaves like an ideal gas with an equation of state

P = nKT.




DIFFUSION EQUATION

In Eq. (21), the Magnus force term causes grains with vdT o diffuse -

somewhat slower than those with v 1 4. As a result, the translational (-v.) and

rotational (w) velocities are coupled, and the diffusion of grains becomes

anisotropic. As known from the theory of the Senftleben effect11-1* for

molecules (with mechanical spin and magnetic moment) in a homogeneous magnetic

field, the anisotropy of the diffusion coefficent decreases with increasing

particle size.

Nondimensionalization of Eq. (21) 1indicates that the strength of the

coupling of the translational (v) and rotational (w) motions by the Magnus

force « V x w is determined by the relaxation frequency

2! = (2/3)Y Y /my kD V2, (30)

where wp = (3KT/I) 1/2 4g the thermal frequency of rotation, and I = 3ma?/s

P

for spherical grains. Accordingly, one expects the diffusion anisotropies to

1

be insignificant for coupling frequencies t.”" which are small in comparison

with the translational relaxation frequency tl'l.

The diffusion equation for the grains -<Collows from their continuity and

motion equations in the carrier wedium. The moments of the kinetic Eq. (21)

for the corresponding dynamical variables (@) ® and (av)! are

/3t + Veln <w) = 0, (31)

> +> » > > 1 > +>
3(nm<v>)/ 3t + Ve(nmdvdLvD>) = =9(nKT) + np>+VB - 1;7" nm(<v> = <vp>) (32)

for

TEI < ‘l’l-l(l + tz-l/tl_l)l/2~ !’1-1- Tz-l < Tl-l . (33)



-~

Equation (33) is the condition for the quasi-isotropic diffusion

approximation.l“

The sources for the momentum changes pf the grains are the
pressure gradient, the magnetic dipole force density, and the intercomponent
friction force density between 'the grains and the carrier medium (F) with mean

mass velocities <v> and <—v.l_.>. respectively.

i The magnetic dipole force density in Eq. (32) results from Eq. (21), in

accordance with the partial integration

+0 +o » +w +0 » »

> > +3¢3-> > > > <+
[ [ v ael(pevB)El/3v d3v dw = = [ [ £ pevB d3v d3w = - n<p>.VB (34)

PR it aare-

4 for particles with magnetic moment P = yIT, and f ~ exp(-mvZ/KT) » 0 for
'Vl + -,

For diffusive or slow shock-free motions of the grains, the nonlinear

i inertia term V-(nalv><{V>) in Eq. (32) 1is neligible. In this approximation,

elimination of nlv> from Eqs. (31) and (32) yields the "hyperbolic™ diffusion

. equation for the grain density field n(T,t) in isothermal carrier media (T):

3%n/3t? + 17! /ot + t7lve(n<d ) - q:v-IVn - n(<p>+vB)/KT] , (35)
r
where

er = (KT/m)1/2 (36)

is the thermal speed of the grains of mass m. Equation (35) repéesents a wave
g equation which propagates density perturbations n(T,t) with a characteristic
' speed cr and relaxation time <t,.

In applications usually only large observation times are of interest,

» t > t;. In this case, Eq. (35) can be reduced to the "parabolic" diffusion
, equation for grains in isothermal carrier media (T):

J

d

(]

L]

= -10-

w5
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/ot + vo(n<;F>) = DPs[Vn - n(<;>-V§)IKT] ‘ 37;

where

D = tycp? = (KT/m)7y (38)

is the diffusion coefficient in the quasi-isotropic approximation (33).
Equation (37) propagates density perturbations with infinite maximum speed,
since cp? + = for 1, + 0 by Eq. (38). 1%

In Eqs. (35) and (37),4V-(n67%>)considers the convection of grains by
the flow €7}> of the carrier medium (F). The self-consistent magnetic

field B in these hyperbolic and parabolic diffusion equations is described by

> > + hd
B = poli + pondp>, 9B = 0, (39)
+> > *
H=- 79, YxH=O0, (40)
2 >
Ve = V+(n<p>), (41)
where
+* + >
d<p>/dt = y<p> x B ., ’ (42)

Equations (39)-(42) are the macroscopic (average) versions of Eqs. (22)-(24)
and Eq. (10), respectively.

The presented diffusion theory for magnetic grains suspended in gaseous
or liquid media (F) 1is applicable in the tsotropic diffusion approximation

(33), which requires that

2Vl - (apmd)t/2 €1, k > 1, (43)
2}/ ~ (npup/np)(KT/m) V% € 1, K € 1, (44)
-11-
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in the free molecular and continuum flow regions, respectively, For K » 1

the isotropy condition {s satisfied since L € m for macroscopic grainms
(a®»10"!1% 0 ) of mass m = (4na3/3)p (solid-state density p > 103 kg/m?). For
K € 1, the istropy condition 1s satisfied for dense gases, and also for

typical 1liquids (nFmF- 103 kg/m?®, n_ ~ 1073 kg/msec, T ~ 300°K) for

F
which rc’l/rl‘l ~10-%/al/2 1 for a > 10-10 p,

=12~
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BOUNDARY-VALUE PROBLEM o c.

In the classical theory of Smoluc:m'n‘vski,16 noncharged and nonmagnetic
colloidal particles of radii a and b >< a are shown to coagulate upon
approaching their critical 1nta;raction sphere of radius d = a + b by Brownian
motion. When the grains are surrounded by a layer of solvent, the contact
distance d 1is not exactly the sum of the grain radii a and b. If the
macroscopic particles have a magnetic moment, the coagulation process 1is
considerably enhanced by the drift motion of one dipole P, in the
attractive, 1inhomogeneocus magnetic field -B.B of the other dipole Tg.
Experiments indicate that an external, homogeneous magnetic field B, directs
the agglomeration of particles into conglomerates of the form of long chains
parallel to —B:,.S;G

In order to'provide an understanding of the coagulation of ferromagnetic
grains 1in dilute suspension, the boundary-value problem for the spatial
distribution n(r) of similar “field"” dipoles ?} of radius r = a in the
magnetic field -B.B(r) of a fixed "sink” dipole Pg of radius r = b shall be
analyzed, when a homogeneous magnetic field -B.o is present. The latter 1is
assumed to be parallel to the z-axis (Fig. ‘1) and is in spherical coordinates
(r,0,¢) given by

+ i H
By = B, {cos8, - sine, O} . (45)
The sink dipole 'p’g i{s taken to be at the origin T = 0 and is to be aligned

with _B'o (Fig. 1), so that in spherical coordinates

L

p8 - pe{coae, - sing, 0} . (46)
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The mnagnetic fleld '?B = -V(uo'b's-_t’/!mr3) of the sink dipole 7.

1s by Eq. (46) _ .

Fs
= -—3 H]
Bg=A T {2.cose. sing, 0}, Ag = uops/h (47)

—

The 1intensity of the total magnetic field B(r) B, + —55()

position T from the origin (Fig. 1) is then

- 2 2 -3 24 o
B(r,8) [Bo + -BOABr (3cos ‘g 9]

+ (A 2(3cosZo + D)2, d<r (- (48)

For saturated, ferromagnetic grains with quasi-instantaneous alignnentlz in

the local magnetic field_i.(—r.), the magnetic dipole force is derivable from the

potentiall” Pa'B,

>

+» » » +> +
Pg * VB = V(pgB), pg = P4B/B (49)
For 1isothermal systems, it 1is convenient to introduce the dimensionless

potential

¥(r,8) = [pgB(r,8) = puByl/KT (50)
Wr,8) +0, r+ s, 0<O6<n , (51)

> > . '
Pg*VB/KT = 9y . (52)

The carrier medium in which the magnetic grains are sugpended is assumed
to be at rest, <v°F> = 0. According to Eqs. (37), (50), and (52), the
distribution n(r,8) of field dipoles P, in the surrounding d < r £ = of the
sink dipole ‘f)’s (Fig. 1), as modified by thermal di{ffusion «Vn, magnetic
field drift =9y, and coagulation at the contact sphere r = d = a + b is, {n

the stationary state, determined by the elliptic boundary-value problem:

- R LS SR
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7e(Vn - aWy) 20, d<r<m, (53)

n(r = d,8) =0, 0<6<m, (54)

a(r = =,8) »ng, 0<8<m, (55)

; where n = n(r,9) due to azimuthal (¢) symmetry, and n, is the grain density

11

: at large distances r » d from the sink dipole 'E%. For y(r,9) 0,

; Eqs. (53)-(55) reduce to Smoluchowski's boundary-value problem,ls which has
2 the simple solution n(r,é) = ny(l - d/r).
2
: The magnetic field drift term «V¢ and the complex r,9-dependence (48) of
the potential function ¢(r,8) render the boundary-value problem (53)-(55)
; nontrivial. The ansatz
a(r,0) = N(r,o)ew(r’e) (56)
' reduces Eq. (53) to the Laplace equation with a variable coefficient exp(y),
4 ve(e?m) =0 . (57)
{ The first integral of Eq. (57) {s proportional to the grain flux J =
' =D exp(¥)™ = -D(Va ~ nV¢). Hence,
ety = {(38/36)/r2sine, =~(3S/3r)/rsine, O} . (58)
‘ can be derived from a stream function S = S(r,8) so that V:I'- 0 and Eq. (57)
' is satisfied. Equation (58) yields
ts
<}
L
'y
)

A SN AT o N |



I

eV w3 3w3s

2y 5 -
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The right side of Eq. (59) suggests that the stream function is of the form

s(r,8) = a(r,s)e"(F+® (60)
which eliminates the variable coefficient exp(-y) from Eq. (59),
1 3y 32 3y 30
2q = - A AL o AL
VN = = ¥ 251ne Cor 20 T 26 ar y (61)

In order to homogenize both boundary conditions (54) and (55), N(r,8) {is

decomposed as

N(r,8) = no(l - d/r) + g(r,e) . (62)

By Egs. (53)—(555, (56), (61), and (62), the function g(r,8) 1is determined by

the boundary-value problem for a Poisson equation with homogeneous boundary

conditions:
v2g = (r,8), d<r<em, | (63)
g(r = d,8) = 0, 0<o<m, (64)
gr = =,8) = 0, 0oL, (65)
uh;re

- L 338 2y 28

Qr,8) = =770 Gor 30~ 20 ar)  ° (66)

In the flield-free case, the stream function 1is S(r,8) = - ngdcosé for

¥(r,0) = 0, Hence, for ¥(r,8) # O,

v(r,98)
S(r,8) = - nod e cos8, Q(r,0) = - nodcose, (67)

and

(59)
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Q(r,8) = - nodr’z au(r,8)/3r T (6R)

with r2Q(r,8) = - ngd3¥(r,9)/dr +» O for r » = by Eqs. (48) and (50).
For the region outside of the interaction sphere, d < r { =, the Green's

function of Eq. (63) and the homogeneous boundary conditions (64) and (65) is:

G(r,95c',8") = - [R™! - (4/e") RZ!/4m (69)
where
R(r,9;c',8') = [r2-2rr'cos(6-e')+r'2]1/2 (70)
R,(r,85r',0") = [(4%/r")? - 2042/t )rcos (0-0")+r21/ 2 |
with

R-! ..(d/r-)R;1 forr=d, R=0forr' =r, 08' =9 . (71)

The coordinates of the field and source points are designated by (r,8) and

(r',9'), respectively. The Green's function (69) has the properties
G=ofor r'=r, 8'=8; G = O for r=d, 0S6<nm; G =0 for r=e, 0S9<™ .(72)

The solution of Eqs. (63)-(65) 1is, in terms of the known functions
G(r,9;r',8') and Q(r,0),

g(r,8) = f.wa(r',e')c(t,e;r',e')Znt'2 sinf'dr'de’ . (73)
d0

Thus, we obtain from Eqs. (56), (62), and (69) the following analytical
solution for the spatial distribution n(r,8) of the field dipoles p, in the
superimposed magnetic field 'Eh(r.e) of the sink dipole Ppg and the

external, homogeneous fieldli;:

] .9
a(r,8) = [n (1-d/r)+ [ f"Q(t".9')0(1‘.8;1".6')2nr'2s1ne'dr'd0']ew(t ) . (74)

do
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This result shows that the distribution n(r,9) of ferromagnetic érains.‘.s
composed of the field-free solution multiplied by .the Boltzmann fact’or, t
ny(1-d/r)exp(w), and a source solution, g(r,8)exp(y), which vanishes at both

boundaries r = d and r = . . i

The current density j = -D(7n - nVy) of the magnetic grains a streaming

to the interaction sphere r = d around the sink dipole B8 is by Eq. (74),

_2 2 (rte)
j(r 8) = -Dln dr™%e +v r rQ(r ,0")G(r,8;r ,e )2nr' “sinf'dr'de’ Je . (75)

d 0. §

As an illustration, Figs. 2, 3, and 4 exhibit the dimensionless grain

density N(p,8) = n(r,8)/n, versus the dimensionless distance p = r/d > 1

(from the source dipole B) for the angles 6 = 0; =/4; /2, with ¢,
PaBo/KT = 1 and € = pchB/KT = 0.1; 1; 10 as 1interaction parameters
(Bg = wopg/4nd®). It 1s seen that the field dipoles a are distributed
anisotropically around the source dipole B8, caused by its magnetic self-field -
'B’B(r,e) and the external (homogenous) magnetic Eield E.o- where N(p,)) >
N(p,n/4) > N(p,n/2). This anisotrophy effect increases strongly with
increasing e = fls (Figs. 2, 3, 4), but increases only slightly with
increasing ¢, = B, in the interval 0.1 < e, £ 10 (for the latter reason,
only €45 = 1 shown). .
Comparison of Fig. 4 with Figs. 2 and 3 indicates that the magnetic grain
distribution N(p,9) changes qualitatively for large interaction parameters €2
10. The distributions N(p,8) in Figs. 2 and 3 are of the “"diffusion type," ‘
whereas the distribution N(p,8) in Fig. 4 is controlled by the (a-8) dipole-
dipole interaction. Since for ¢ 2 10 the energy pyBg of the field dipoles

a in the magnetic field _B'B of the source dipole 8 1s much larger than the

thermal energy KT, a large amassment of field dipoles a results {n front of

.
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the r:.eference dipole 8 (Fig. 4). In view of the binary ,inierac:;c.n
approximation, Fig. 4 is strictly applicable only to absolute a-dipole
densities n(r,8) for which the average binary (a-a') interaction parameter
€qq' 1S small [Eq. (7)]. ‘

In view of these observations, it is to be expected that the coagulation
rate yv,g of grains with magnetic moments Po and ‘p‘s depends (i) strongly
on the magnetic dipole-dipole interaction paramters ¢ and (ii) on the
interaction parameter g4 ~of the dipoles with the external magnetic field
—B.o. In the presence of a strong Ti.o-fieid the coagulation rate y,g would
obviously decrease with increasing e¢ = uopapellsudal(‘r so that grains with

large magnetic moments p, and pg coagulate at a slower rate than grains

with smaller magnetic moments (in agreement with experiments).
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COAGULATION IN MAGNETIC FIELD o ..
The local density ng, of particles (grains, chains) with magnetic

moment p, decreases due to coagulation with particles of magnetic moment

pg and local density ng, in accordance with the rate equation16
anuo/at a - g Yoa" 00" 80" (76)
The summation extends over all particle components 8 3 a including 8 = a.

Equation (76) defines the binary coagulation coefficients Yus[m3/sec].

For the analytical caléulation of the'coagulation coefficients y,g use
is made of the numerical result that the spatial distribution na(r,e) of
a~dipoles around a B-dipole 1is given, in good approximation, by Boltzmann

statistics as (dus = contact sphere radius for a~8 coagulation)

na(r.e) :'nao(l - daﬁ/r) exp[wae(t,e)] (77)
where
pB pB r3 r3 r3
d’as(r’e) - - k—%—o + ‘E‘%‘o-(l - —2)[1 + 3(2 —g + 1)(-—% - 1)-2 cosze]llz (78)
r T r
and -
r, = (A,/B )1/3 = (up,/4nB )1/3 . (79)
B~ "B o o'8 o

Equation (77) follows from the complete solution (74) by neglection of the

g(r,0) contribution (78) with vanishing boundary conditions [Eqs. (63)-(66)].
n

In this approximation, the flux &3 = 2nf jr.aarzsinede of a-dipoles
o

to the g-dipole {s



oas(r) = - DaZ"nao

.

n . . -
d.q g exp[was(r.e)] sing d8 (80)

since the a-dipole current density |is 3;3 = = Dg(Wn, - Ng7ag) =
Duncodasr‘2 exp(wae)i} by. Eq. (77). The number of a-dipoles which
reach, per unit time, the contact sphere r = d,g of one g-dipole is

n Y

a0 a8 =T Ca

L (r =d ), C.Tl, a8, € _ =2, as=28., (81)

8 aB afB aB af

Cqg 18 an accommodation coefficient, which considers that not only the

6 Equations (80) and

a-dipole but also the A-dipole is in thermal motion.!
(81) yield for the coagulation coefficient in an external (homogeneous)

magnetic field the formula:

pB 1 p B (203 +1)
- -390 &0y _ ,~3 a8 " 2y1/2
Yag = 47Cyg9,8 0 &XP(- ) [ exp| T (1 pas)[1+3 3 S 0 1'" 4}do (82)
0 (o’ ~1)
af
where
= = 3 1/3
Pag = daB/rB (QndaaBo/uoPB) . (83)

and g = cos8. For the practical evaluation of the integral in Eq. (82) it is
noted that the dimensionless parameter pa83 is very large even for moderate
external By-fields, e.g., pgg’ ~ 10* for dgg ~ 1077m, pg ~ 10'%Am?,

and B, = 1 vsec/m?. Accordingly,

~ paBo 3 T (-6)n puBo " 3
Yag ~ b'casdaﬂoc exp (- 3 M+ le3+e+(2n+l) ( 3 ) b a8 > 1, (84)
KTp =] KTp
af aB
or
upp » P upP
Yag 4 I'"coeduBDa exp(- 288 : B yry y 1.3("22“”) o a 8yn R
4nd ) KT n=1 awd;BKT

3
BO> LIOPB/‘!'NduB (85)
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Although Eq. (82) predicts a B,-dependence in general, the coagulacion
coefficient y,g 1is no longer B,-dependent in the 1limit of large
Bo-fields, °a83 » |l or By » uopallmdasa. Equation (85) shows that
Yqg decreases exponentially with 1increasing ratio of dipole interaction
energy uopapsléwd033 to thermal energy KT. Hence, grains or chains
with large dipole moments coagulate slower than those with small dipole
moments, in the presence of a strong external magnetic field .B.o {Eq. (85)].

In the absence of an external magnetic field, _Eo = 0, we have pyg = 0

by Eq. (83). 1In-this case, Eq. (82) gives for the coagulation coefficient

1 HoPaPg 2v1/ 2
Y., = 4nC d D [‘exp[———(1 + 30%)}'%]do, B =0 . (86)
af a8 a8 a 0 A"dgsm‘ o}

Since 0 < 30?2 £ 3 for 0 { 0 < 1, the integral in Eq. (86) can no longer be
approximated by a rapidly converging series. For particles without dipole
interactions (rigid spheres), Pa,8 = 0, Eq. (86) reduces to Smoluchowski's
formula yqg = 4nCqgdagDq.'®

The integral fupctional in Eq. (86) indiéat:es that the coagulation rate
Yqg Lncreases essentially exponentially with increasing ratio of dipole
interaction energy uop(,psllmdc‘s3 to thermal energy KT, if an external
magnetic field is not present. Thus, in the case B, = 0, Yo 1s larger
than 1in the ptesenc;e of a strong external magnetic field, B, »
uoPs/"“daﬂa' In the latter case, vy, g decreases exponentially with the
same energy ratio [Eq. (85)].

The stabilizing effect of an external magnetic field B, concerning the
decay of a magnetic aerosol by coagulation is experimentally established. 1In
particular, homogeneous magnetic fields B, 2 10-2 vsec/m are applied to the

chambers of ovens for the generation of ferromagnetic aerosols, in order to
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reduce the coagulation rate and to align the ferromagnetic colloid chains. By
Eq. (76) the relaxation time t,¢ for coagulative decay of the density

nyo of dipole particles with magnetic moment p, is

¢ 1/y n . (87)

c C -
= Y 1 =
Ta l/~(ra8) » Tag aB Bo

8
Another method of reducing the decay rate of ferromagnetic aerosols is to
spray the ferromagnetic pagcicles with electric charges. The resulting
Couloumb repulsion of :ﬁe magnetic particles effectively reduces coagulation
as has been demoqs:tated experimentally.17
The presented theory should be considered as a first step towards a
quantitative understanding of the coagulation of magnetic aerosols in external
magnetic fields.’ At higher aerosol densities, many - dipole interactions have
to be consider;d (in addition to the binary dipole {interactions) in the
analysis of the coagulation coefficients. In principle, this can be
accomplished by means of the kinetic equations (21)-(24) or the corresponding
macroscopic transport equations (37)~(42), with self-consistent magnetic

dipole interactions.’
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FIG. 1: Fleld dipole-p: in the magnetic field B(r,8) of a source dipole

L 4
Pg and a homogeneous magnetic field B,.
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FIG. 2: Dimensionless grain density N(p,8) versus p = r/d > 1 for 0 = 0; n/4;
®/2, € = 1, and ¢ = 0.1. - ’
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FIG. 3: Dimensionless grain density N(p,8) versus p = r/d > 1 for 8 = 0; n/4;

n/2, ¢ = 1, and € = 1.
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FIGURE CAPTIONS
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FIG. 1: Field dipole p, in the magnetic field B(r,9)

i
Pg and a homogeneous magnetic field B,.
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Dimensionless grain density N(p,9) versus p = r/d

= 1, and ¢ = O.1.

Dimensionless grain density N(p,98) versus p = r/d

=], and‘e = 1,

Dimensionless grain density N(p,8) versus p = r/d

= ], and ¢ = 10.
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STATISTICAL DISTRIBUTION OF RANDOM ELECTRIC FIELDS IN CHARGED PARTICLE GASES

H.E. Wilhelm

Michelson Laboratory, Naval Weapons Center, China Lake, CA 93555

ABSTRACT

The temperature (T) and density (n) dependent probability
distribution W = W(E;T,n) of the collective electric fields E in an
ideal gas of charged particles each carrying the same charge ¢ (electrons:
=~ eb <0; ions: e= Zeo 2 () is calculated from first principles of stati-
stical mechanics. It is shown that (i) the collective electric fields
act at distances larger than the characteristic repulsion distance D =
(KT/&nnez)llz of like charged particles, and (ii) the average collective
electric field is Ew = (121ml('1’)l/2 for ideal gases of particles of the
same charge 2. Thus, in a thermal equilibrium gas of like charged par-
ticles, the longitudinal microfields are considerably stronger than in a
quasi-neutral plasma, since in the latter the random field effects of the
negative electrons and positive ions nearly compensate each other. Finally,

the interrelation between (average) kinetic, interaction, collective field,

and electric self energies is discugssed for charged particle gases.
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INTRODUCTION o ..

The probability distribution of the stochastic elécttic fields E
produced by charges ¢ $ 0 of one kind in random thermal motion is of
considerable interest since one-component charged particle gases such as
electron or ion gases are employed in many technical applications of physi-
cal electronics (von Ollendorff 1957). In a macroscopically homogeneous
charged particle gas of density n and temperature T, collective particle
interactions occur at distances r > D, since the minimum wave length of the
random, thermally excited longitudinal charge waves is of the order Am ~D

of the characteristic repulsion distance for particles with the same charge ¢,

D= (KT/&ﬂnez)llz . (1)

By means of Poisson's equation, the random collective field amplitudes Ei in

an arbitrary direction "i" can be estimated from the random particle density n as
EilD - t4men . (2)

Equation (1) and (2) show that an equipartizion between random collective

field and thermal energies exists on the average in a gas of like charges,
<E2/87> = nKT/2 . (3)

A rigorous derivation of Eq. (3) based on the Markov method has been given by
Mints (1957) for a gas of electrons in thermal equilibrium.

By the fundamental axiom of statistical mechanics of ideal systems in
thermal equilibrium, all equilibrium distributions can be derived without
consideration of the interactions which bring about the equilibrium (Tolman

1938). By extending this principle for many-particle systems with discrete

energies to continuous media with random energy densities u = E(;,t)ZIBR,
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we darive the probability distributiom W(E) of the collective electric fields

E(;,t) in charged particle gases. These are assumed to be "ideal”, i.e., the
Coulomb repulsion energy ezl; is assumed to be small compared with the

thermal energy KT,

y = 23/t = 1.670000732%: 317 << 1 . (%)

Among the results reported, it is shown that the longitudinal microfields
in gases of like charged particles are much .larger than those of quasi-neutral
plasmas, in which the random electric fields of the negative electrons and

positive ions nearly compensate each other.
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PROBABILITY DISTRIBUTION o ..

-

Subject of the considerations is a homogeneous gas of volume  containing n
charges ¢ per unit volume. In thermal equilibrium, the kinetic energy density
of the charges of mass m and velocities Vhis given by

N
<9 - - 3 noxT , N=nQ . (9)

u_12 u 2

During the random thermal motions of the charggd particles, a continuous trans-
formation of kinetic particle energy into potential electric energy occurs, and
vice versa, due to the particle interactiond through their longitudinal Coulomb
fields (transverse electromagnetic interactions are negligible for mc2 >> KT).

As has been shown ‘first by Mints (1957),.equipartition of average random electric
and kinetic energfes exists in statistical equilibrium [for a thermodynamic deri-

vation, see Eq. (46)] of a gas of particles with the same charge,
{§2/8n> "% nKT . . (6)

The electric field ﬁ(;,t) produced collectively by the charges at any point
T ¢ Q and the field energy density u = %(;,t)Z/SW fluctuate with time t about the
average values <B =0 and <§2/81> ¥ 0, respectively. The proposed problem is to
derive the probability w(i)a’ﬁ for finding the collective field fluctuation % in
the volume element daﬁ = dExdEydEz about the point = (Ex,Ey,Ez) of the field
space subject to the thermal equilibrium conditions (5) and (6).

In order to determine experimentally the collective microfield distribution
W(E) = W(§2/8w) in a homogeneous and isotropic gas of charged particles, one would

have to measure the fluctuating field t or the fluctuating energy density EZ/Sn in

the vicinity AJ; of a fixed field point TeQ at consecutive times L, = vev,




v = 1,2,3,...N within experimental errors At << 0, where 0, is a time interval

which is large compared with the correlation time of the stochastic field so that

€E(?,tf€(;,t + Gv)> = Q (within these limitations, the magnitude of Gv may be

changed from one measurement v to the next v + 1). In a large number of such

measurements, J + =, the energy density Ei/Sn would be observed Nl times, ...,

, the energy densiCy'ﬁilsw would be observed qxtimes, etc., where fi/Sn means an

experimental value measured with an error A(Ei/Sw). The resulting step-shaped

energy distribution Na - N&(Ei/Sﬂ) is represented by the partition

Nl . Nz 3 L ] Nc LR R NM

Ei/&r 2/8n Eg/su iﬁ/s« fﬁ/&r

N

(7)

i

where

N1+N2-I‘~N3+...Nu+...NH'N s (8)

niﬁi/s« + uiiglsn + Nifg/Sn + ... N&ﬁi/Sﬂ + ... N&E§/8ﬂ - N<E2/8m>. (9)

N is the total number of measurements (N + =) and N<E2/8n> is the total field

energy density measured in the N independent observations. The entire energy

density N<§2/81> can be-distributed in a large number N of ways over sets {Na}N

of numbers ¥ . By elementary combinatorics (Tolman 1938),

n=n5/ N, ! Nzl N3! ces na! ves NM! . (10)

The energy distribution N&(filsn) observed in statistical equilibrium is the most

probable one. Thus, NG(E:/SW) is determined by the condition for a maximum of 1)

the number N1 of realizations or ii1) the entropy S ~ 1nll, subject to the constraints

(8) and (9).
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Accordingly, we determine the probability distribution Na(E§/8“) from the

maximum of the function lnl = f(Na),

M
Inl = N(In¥ - 1) = ] N (InN_ - 1) (11)
a a
a=1
with
M
= 2
I8 =0 - »  (12)
a=1
M
I N t2/8n = ¥3 kT - , N+ = »  (13)
aa 2.

a=1

as constraints. Eq. (12) holds by definition of ¥, whereas Eq. (13) holds for a
large number ¥ of measurements and the average energy density <§2/8n> of Eq. (6).
Addition of the constraints (12) and (13) multiplied by the Lagrangian multipliers

-A and -y to Eq. (11) leads to the compact maximum conditions for 1nll,

F(N)/ON_= 0 , azr(ua)/ani <0 , a=1,2,...M L (14)
where
M M Mo,
FON) = §Qa¥ - 1) - [N (N -1 -AJN -u] NE/8r . (15)
a=1 a=1 a=l

The solution of Eq. (14) gives the distribution Na of the "discrete' energy densi-
ties §§/8n in the form
2
uiclaw

N = Ae , A
a

= o~ (M) . (16)

Henceforth, the subscript a is dropped since Ea can be any point t in the field
space. The dimensional constants A()\) and u are then given by the normalization

conditions (12) and (13),

® _ 22
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Af (Ezlefr)e“‘iE /87 4np2dE = N-g- nKT . (18) A
0 .
as ' X

A= (82nkT)" ¥y 4 = 1/nKT . (19)

For this normalization, which still contains the number N of measurements, the

probability distribution (16) for the microfield energy density is !

: 2
WN(EZ /81) = N o-E /8mKT

. (20)
(8w2nKT)3/2

In theoretical applications, one is interested in the probability dP = W(E)d3f
for finding a microfield £ in the volume element daﬁ about the point E of the field
space, with the normalization fdP = 1. The corresponding distribution function

W(E) of the collective microfield £ is obtained by renormalization (¥ + 1):

2
W(E) = (8n2nkT) /2 E /8mKT . @

This fundamental distribution has the form of a Gahssian, i.e., all its moments

exist, e.g.,

9 - f+ (1%@ a2 -1 . (22)
&5 - fff. o 1 ] ' | . @23
£ - f}}izw(z’)d"’i-.’ = 12 mKT S ¢2))

The most probable (EM) and the r.m.s. (Ew) collective microfields are by Eqs. (21)
and (24)

B, - (8mkr) /2 , (@25

E, = (12mkT) /2 . (26)
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For considerations concerning the fluctuation of the collective microfitld

E(t) at a point ;eQ with time t, temporal averages can be defined by

Y 1 7T

|E| = 11m§;[ |E(e) |dt . @n
Tre -T

32 1 7% 2 )

E° = lim 3= [ E(t)%de . (28)
> -1

— coe—

The fluctuation of E(t) is defined by AE(t) = E(t) - E(t) with E(t) = 0. In
stationary equilibrium, the time averages are identical with the ensemble averages.

By Eq. (21), the mean square (temporal) fluccdacion of E(t) is

—_ = —2
aE® = B2 - ] = - -3-)41:111(’1' . (29)
TABLE I compares the r.m.s. field Ew and the r.m.s. fluctuation (Al-:z)]‘/2 of
the collective microfield with the nearest neighbor Coulomb field E,6 = 217(4/5)2/3x

[e}n2/3 in dependence of the particle density n for an ideal electron gas

(y<<1, T = 104°K). It is seen that Ew and (AI:‘.Z)I/2 are one to two orders of

magnitude larger than Eo in the range of ideal gas densities n < 1018cm-3. For
these reasons, the Coulomb £field Eo represer~s a small contribution to the
microfield in ideal gases of charged particles. The result Ew >> Eo is readily

understandable since for ideal conditions

4/3, e?t/3

KT

E2/E; = (1/3) (4/15) <y el . Qo)

The probability for observing a collective microfield with intensity E = |E|
in the range between E and E + dE is P(E)dE = W(§)4wE2dE, where W(E) is given by
Eq. (21). The maximum of the probability density P(E) is P(E,) = hexp L (8 tnxT) "2
by Eq. (25). Accordingly, the normalized probability density is P(E)/P(EM) =

X(EZ/ 8mKT)exp[l ~ EZ/SnnKT] < 1. Figure 1 presents P(E)/P(EM) = P(E2/8nnKT)

versus E2/8nnxT. This distribution is a displaced Gaussian with a maximum




1/7-

P(Ei/SWnKT) =1 at E = EM' The most probable electric field EV = (87nKT)

/2

. 1 . . . , .
increases proportional (nT) with increasing nT values. The increasing

quantitative importance of the collective microfield E in ideal charged par-~
ticle gases with higher pressures p = nKT is obvious.
On the other hand, in a quasi-neutral electron (e) - ion (i) plasma

3,-1

0% =Zni), the microfield energy U  differs by a factor of order (neD+)

P
from the microfield energy Eé/an{Eq.(26)] of the charged particle gas, where

D, = [KT/lm(nee2 1/2

o # D is the Debye. shielding radius (Debye and

2
+nel)]
Hueckel 1923). Since (neDE)-1 << i for ideal conditions, the microfields in
plasmas are small in comparison with those in ideal gases of 1like charged
particles. In a plasma, the random electric fields of the negative electronms

and positive ions'compensate each ether nearly completely. This incomplete

statistical compensation is the physical reason why 0 < UP << E§/8ﬂ .
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ENERGY RELATIONS

A gas of charged particles in thermal equilibrium at a temperature T ex-
hibits various macroscopic energies, the average kinetic energy <> = %nKTQ, the
average electric field energy <U> = <E2/8n>9, the average interaction energy <¢>
and selfenergy <¥> of the charged particles. In order to derive the interrela-
tion between these energies, the formation of the gas by an electric charging
process is considered. For this purpose, we assume that the charged particles
are initially dispersed at infinity where they have only selfenergies. The gas
is then built up by moving one charge after the other from infinity into the
volume 2, which requires work against the resulting Coulomb field of the charges
already present in Q. The thermodynamics of the charging process is illustrated
by 1) a reversibl? isothermal and ii) an adiabatic or isotropic model.

The electric charging work expanded in moving N charges ¢ against their
collective Coulomb field from infinity into the (finite) volume @ is (* designates
exclusion of terms with y = v)

A -%l}? * ’f *q_zl?u = F T, e . G
u=1 v=1 '
where ;u (;v) are the position vectors of the u-th (v-th) charge ¢ in the volume
Q, respectively. The collective microfield of the N charges at a field point

(;,t) is the superposition
> N +>
E@,e) = ) E, (F,¢) , (32)
u=l
where Eu<;’t) are the individual Coulomb fields produced at the field point

(;,t) by the u-th charge. By Eq. (32), the electric field energy of the gas Q is
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where
ot 1t IR, e (39
8"u=l val @ H VY '
1 2%
vl [[fE)ET ,  (35)
u=l H

are the (e-e) interaction energy and the (e)selfenergy of the charged particle
gas, respectively. Comparison of Eq. (31) with Eq. (33) reveals the interre-

lation
U-¥¥=3¢= A . (30)

Thus, we see that the field energy U is the sum of the interaction energy ¢ and

the geffenergy ¥ [Eq. (35)]. The charging work A leads to an increase of the in-
teraction part ¢ of the field energy U [Eq. (36)]. The selfenergy ¥ of the charges
is independent of the spatial locations of the charges, 1.e., ¥ is Fhe same before
and after the charging process.

Another independent energy relation 1s obtained by multiplication of the
coupled Newtonian equations for the accelerations dz;u’v(t) /dt:2 of the u-th charge
and the v-th charge by their respective velocities '\;u, v(t) =- d;u’v(r.) /dt and sub-~
sequent summation over all particles y and v. The resulting expre'ssion can be
brought into the form d(X + ¢)/dt = 0, which demonstrates that the sum of kinetic

(¥) and interaction (¢) energies is an invariant “o’

K+ ¢'Ho (37)
where

nv (38)

N

N
k= 3 2
u=1 e
and ¢ = A 18 defined in Eq. (31). Eq. (37) expresses the conservation of kinetic

K and interaction ¢ energies in a gas of charged particles which interact by longi-

tudinal Coulomb fields.
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The thermodynamic functions of the gas depend in general on the volume 7,
the number N of particles in Q, and the particle averages of the random kinetic
1 =2 . +>2
energies Fmv and the random field energy densities E“/8n. Accordingly, we
assume Uth = Uth(T,e,N) for the thermal energy and S = S(T,e,N) for the entropy,

where

3KT/2 = <%m-52> , £ = <E2/81r> . (39)

For gas formation by'isothermal reversible charging, the volume @ is
embedded into a heat bath of temperature T. The transfer of dN charges e from
infinity into the cavity Q requires on the average the charging work dA = d<U - ¥>
= d<U> by Eq. (36), and their thermalization at a temperature T consumes on the
average the enetgy'dvth --%KIdN. The difference of these energies, dQ, is

supplied by the heat bath. In accordance with the first law of thermodynamics
dq = du*P - a<v> (40)

since no other than electric charging work is performed on the system (d2 = 0).

The associated entropy dS = dQ/T is a complete differential,

13 ,th _ 13, th_ 3 th _
ds = 337U - <B)AT + 5 7=(U° = <B)de + 50U - <B)AN . (41)

Application of the condition aeaTs =- aTaEs to Eq. (41) yields the partial differ-

ential for constant N and T,
auth/ae = 3<w> /3¢ . (42)

Since Uth = 0 for e = 0 (no thermal energy in Q before charging), the integral

of Eq. (42) is

vth - e . 43)
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Edl (43) could have been derived by other thermodynamic gas formation

processes, e.g., by adiabatic charging of the cavity 2. In this case dQ = 0,

and by Eq. (40)

dQ = dut? - 4> = 0 <> = yth . (4b)

Finally, <U> can also be determined as that equilibrium value which maximizes

the entropy,

1,...th h

ds = T-H{du*™" - d<U>] = 0 : <v> = gt . (45)

Eqs. (43) - (45) indicate that an equipartition between thermal energy and
average microfield energy exists in statistical equilibrium. This fundamental

result is explicit;y (Mints 1957).

-g-m = a<E2/8m> - (46)
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CONCLUSION

In ideal gases of charged particles, the distribution function of the
collective microfields is strongly temperature and density dependent. For
typical temperatures and densities of ideal systems, the r.m.s. collective
microfield is by orders of magnitude larger than the quasi-static Coulomb
field. In statistical equilibrium, a balance among (average) kinetic particle
and collective microfield gnerg;es exists, which is independent of the process
of the formation of the charged particle gas.

The derived formulas for the average microfield and energy are appli-
cable to ideal gases consisting of one species of charged particles. Examples
are electron gases in highpower tubes and diodes, and non-neutralized beams and
clouds of charged particles in outer space. Our results are not applicable *
plasmas, since in these the electron and ion components have no independent
existence (coupling of the negative and positive charges through the self-

consistent field and quasi-neutral or quasi-compensated behavior).
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APPENDIX D

COVARIANT ELECTROMAGNETIC THEORY FOR INERTIAL FRAMES WITH SUBSTRATUM FLOW

H. E. Wilhelm

Michelson Laboratory, Physics Division, Naval Weapons Center, China Lake, CA 93555

Abstract

Based on the Galilean jrelativity principle and Maxwell's equationms,
electromagnetic field equations are derived-for inertial frames, inwhich the
substratum of the electromagnetic waves flows with arbitrary velocity I;I <c
(velocity of light). It is demonstrated that the electromagnetic field equa-
tions with electromagnetic substratum flow are strictly covariant against
Galilei transformations. Wave equations, conservation and invariance theorems,
and boundary conditions are derived for the electrodynamic fields in presence
of electromagnetic substratum flow. Initial-boundary-value problems are solved
for electromagnetic signal propagation and induction in the substratum by an
integral equation method. Physical effects-ior the measurement of the veloc-
ity field of the electromagnetic substratum are discussed. Maxwell's conception
that his equations refer to a frame of reference with resting electromagnetic

substratum is confirmed, and it is shown that Maxwell's equations are also

applicable to inertial frames with small substratum velocities, I;l << ¢.




INTRODUCTLON
. Sin;e the discovery of the 2.7°K cosmic microwave radiation [Wilson, 1980]

g Maxwell'’'s original ideas on the propagation of electromagnetic waves in the so>-called

° electromagnetic ether have become of renewed interest. According to Maxwell,
Heaviside, Lorentz, and Poincaré the electromagnetic field equations refer to a

/ system of reference in which the carrier of the electromagnetic waves 1is at rest

! [Whittaker, 1951]. By comparison with other wave phenomena, this restriction appears

to be physically and mathematically necessary, since the Maxwell equations do not

contain explicitly the vélociﬁy field w of the electromagnetic ether [(Lorentz,

1909]. The most familiar “"materfal” propert£es of the ether are the electric (eo=

10-3/36% Asec/Vm) and magnetic (u, = 4nx10~7 Vsec/Am) permeabilities, the wave

resistance Z, = (uoleo)l/2 = 376.731 @, and the velocity of 1light ¢, =

(uoeo)'l/2 = 3x10%n/sec ([Stratton, 1941]. The difficulty of observing the

substratum by other than electromagnetic experiments (e.g., measurements of the

velocity of light and frequency shifts) 1s probably due to an extremely small inter-
action cross section of particles with the substratum. Evidence for this is given by

Fizeau's [1851) ether drag experiment which showg that the ether is not noticeably

. carried along by liquid.matter flowing in tubes.

y As noted by cosmologists, e.g., Mansouri and Sexl {[1977], “The validity of the
principle of relativity (which assumes that the velocity of one and the same light
signal has the same value vg = ¢4 in all (=) inertial frames) seems to be less

\ evident now than, say twenty years ago. The discovery of the cosmic background radi-
ation has shown that cosmologically a preferred system of reference does exist.” In

! critical analyses, Ives (1938, 1948], Builder (1958a, b], and Janossy (1953, 1963]

: demonstrate that the ether effects cancel out in the measurements of the velocity of
light by Michelson-Morley {1887], Morley-Miller (1905], and their modern versions
[Jaseja et al., 1964; Vessot et al., 1979] (using signals sent out and back). On the

other hand, they show that the experiments of Sagnac [1937] and Dufour-Prunien [1937]
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(rotating interferometers), Ives-Stillwell ({1938], and Michelson-Gale [1925] support .

the electromagnetic ether concept. The isotropic microwave background radiation in .
the universe appears to indicate thermal excitations of the ether ‘at a° nearly
isotropic temperature Tg = 2.7°K [Wilson, 1980] and ether velocities 1in the
terrestrial space of the order w - 103m/sec [Henry, 1971].

The impossibility to carry the denial of the electromagnetic substratum in the
special theory of relativity over into the general theory of relativity was clearly
recognized by Einstein [1921]: "According to the general theory of relativity space

without ether is unthinkable; for in such space there not only would be no propaga-

tion of light, but also no possibility of existence for standards of space and time
(measuring rods an& clocks), nor therefore any space-time 1in a physical sense.”
However, Builder [1958a,b] demonstrated for the first time, by means of quantitative
theoretical arguments, that relativity theory without electromagnetic ether leads to
serious physical contradictions. E.G., we now understand that (1) the clock retarda-
tion paradox would imply the existence of absolute velocitfes, which contradict the
postulate of the relativity of the velocities of moving bodies, and (1i) the assumed
principle of the invariance of the light velocity can only refer (if at all) to the N
average light velocity. of a go-and-return path [Builder, 1958a, b}. Accordingly,
Einstein's clock synchronization represents a “thought-ritual,” which has no empiri- .
cal value for the measurement of the actual velocity of light signals [Alfvén, 1977},
and the special theory of relativity is a tautology based on average two-way signal
velocities ([Builder, 1958a,b; Janossy, 1953, 1963; Ives, 1948]. .
Comprehensive discussions of electromagnetic substratum physics, from the

theoretical and experimental points of view, are due to Janossy [1953, 1963]. Dirac

- e - e .

[1958] and Kaempffer [1953]) introduced the ether into quantum mechanics. The

non~Lorentz covariant theory of Wilson [1974] interprets elementary particles as -~

phase changes of an ether model. Winterberg [1984] developed a nonlinear relativity

P

theory with ether and a minimum length, which removes the singularities of quantum

electrodynamics on a physical basis. It is equally remarkable that the apparent

.
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velocity'dependence of mass is explainable as a particle interaction with the ether
(Bagge, 1979]. .

The Lorentz transformations (which would hold in absence of the ether, and
follow from the alleged invariance of the velocity of light signals), are not the
sole transformations which leave Maxwell's equations covariant. Other (real)
covariant transformations of Maxwell's equations have been found by Cunningham
[1909], Bateman [1910]), Fushchich [1978}, and Fushchich and Nikitin [1982]. Under
consideration of the quantum-mechanical commutation relations, Winterberg [1984]
derived nonlinear space-time transformation fpt high energy systems. Typical for
these transformatiops is the use of conventional constitutive telations D = 86E and
B = uoi for the free space, {.e., the vacuum is assumed to have {invariant polariza-
tion properties [Einstein, 1916, 1921].

The simultanedus covariance of Maxwell's equations with respect to Lorentz and
other space-time téansformatlons suggests the existence of covariance under an over-
group of these transformations [Post, 1962, 1967, 1972, 1979]. The earliest predic-
tions of the possibility of simultaneous Lorentz—Galilei covariance of Maxwell's
equations go back .to Kottler [1922a,b], Cartan [1942], and van Dantzig ([1934]. The
over-group 1is {identified as the nonlinear set of coordinate substitutions in space-
time [Post, 1972, 1978]. The "exclusiveness"” of Lorentz covariance in relativity
theory 1is the artificial result of an (arbitrary) restriction to the unimodular
choice /-g = 1 [Einstein, 1916}, which eliminates other transformation groups [Post,
1972, 1978].

Kottler [1922b], Cartan [1924], van Dantzig [1934], and Post [1962] have shown
that the electromagnetic field equations can be brought into a metric-free represen-
tation, {.e., Maxwell's equations exhibit a metric-independent covariance. Thus,
Maxwell's equacions permit & manifold of space-time transformations, if they are not
restricted through the usual linear consitiutive relations D= ¢E and B = uﬁ [Post,
1972, 1979]. Maxwell's equations are covariant even against transformations to

noninertial frames, e.g. rotating frames (Post, 1967), for certain constitutive

Lt g
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relations U = F(E) and B = G(H). The accepted linear constitutive equations appear
to be strcictly valid only for transformations between inertial frames [Post, 1972,
1979]. )

Maxwell's equations refer to an inertial frame Y, in which the electromagnetic
substratum is at rest, Ta’o z 6, and are, for this reason, not Galilei covariant
[Whittaker, 1951). We derive herein electromagnetic field equations for 1inertial
frames Y with substratum veloéity w from established axioms of physics (Maxwell equa-
tions and Galileian relativity principle). We demonstrate that these generalized
Maxwell equations, which contain explicicly chg substratum velocity W, are covariant
agalnst Galilei transformations. Since these are transformations between inertial
frames, the usual linear constitutive relations are assumed [Post, 1972, 1978].

The electromagnetic field equations with substratum flow W and their Galilei
transformations represent a field theory for absolute or Galileian ¥ = (x,y,z) and t
coordinates. In inertial frames with substratum drift w, the Coulomb fields of
charged particles are deformed by convection so that a physical length contraction of
material bodies 1in the sense of Lorentz [1909] occurs. This length contraction
brings about a time dilatation since a clock caﬁ be visualized as a light signal
which 1s reflected anisotropically in the substratum space between two mirrors held
apart by a rod [Builder, 1958a, b]. For this reason, also the interrelation between
the absolute Galileian and the actually measured coordinate and time differences will
be discussed, which 1is .determined by the Lorentz scaling measure y = (1 -
'ﬁzlcz)l/z, i.e., a constant parameter for any given inertial frame G;).

The derivation of the Galilei covariant Maxwell equations for inertial frames
with substratum flow are of interest for (i) mathematical and (ii) physical reasons.
The generalized electromagnetic field equations provide physical foundations for
investigations of the electromagnetic substratum. As applications of this theory,

fundamental 1{initial-boundary-value problems are solved analytically for electro-

magnetic signal propagation and induction {in the substratum. We present these

results for (1) theoretical discussion and (ii) comparison with experiments.
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ELECTROMAGNETIC FIELD EQUATIONS WITH SUBSTRATUM

According to Maxwell, Heaviside, Lorentz, and Poincaré, the electromagnetic
-
fields E° (—;°,t°) and H° (r°,t°) in an inertial frame of reference Z°(-;°,t°,_v:r° =0),

, X 7 =5 .
in which the electromagnetic ether is at rest, w° = 0, are determined by the

classical Maxwell equations for conducting media with velocity field [Stratton, 1941]:

§ oo gou - s

vexEe = —3B°/5¢c° , (1)

voxfic = #9D°/ac° + '§° , (2)

g°-B° = p° , (3)
- ve.B° = 0 . (4)
- where

j° - o°'.\;r° + o (E° + voxBe) , (5)
P = B Be = pofi° . 6)

As usual, thedielectric permittivity €, the magnetic permeability u° and the electric
conductivity ¢° are treated as isotropic and homogeneous. Equatiomns (1) - (6) hold not

only for conducting media, but also for insulatig media including the so-called '"va-

o FR e PR SN )

cuum’’ (0°=0) of the system Z°, which contains electromagnetic substratum at rest,

. we =0, Equation (5) 1is Ohm's law for the current density 3° with space charge flow o °v°.
Let Eqs. (1) - (6) be subject to a Galilei transformation of the space

and time coordinates from the system Z°(';°,t°,3°-'6) to a system Z(;,t,; #'5),

which moves with the constant, but otherwise arbitrary, velocity U relative to

‘ J° (0° of §° and O of | are assumed to coincide for t° = t = 0, Fig. 1):

T =T -t , t =t° (7

3/3t° = 3fat - u-V , V° =Y (8)
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with .
e =FE-wB |, =1 y (P
Je=F+ou |, 0° = p , (10)
Y=V 4+ , w = -u , (11)

as Galilei field transformations. Eqs. (8) follow from Eq. (7) by partial
differentiation, af°(;it°)/at9 = [af(?,:)/a:]at/a:° + [af(?,c)/a?]-a?/ac°, and
3£°(T°,t°)/3T° = [IE(T,t)/3T]-3E/9T°, where 3r/3t° = -u and 3T/3T° = § g5 = 1,

i=3;6,,=0,1i¢#3).

ij
The Galilei field transformations (9) ~ (11) are established empirically,
but will be justified theoretically by covariance requirements. Furthermore, since

medium density and temperature are Galilei invariants,
€’ =¢c , u® =y, 0% =0 . (12)

The invariance of ¢ and u implies the Galilei invariance of the characteristic

phase speed of light [Strattonm, 1941]

c® = (u°8°)-l/2 = (ue)-llz = c . (13)

Since the ether is at rest, w° = 0, in the system 1°, the ether moves
with the velocity W= <0%0 in the system Z (Fig. 1). Application of the
Galilei transformations (7) - (12) to Eqs. (1) -~ (6) yields, therefore, the
electromagnetic field equations in the inertial frame of reference Z(?,t,afﬁ),

in which the ether streams with the veincity W

Ux(E + wxB) = -(3/3t + wN)B , (14)

ol = +(3/ot + w-v)(@B + ewxB) + T - oW

’ (15)
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7. (D + ewxB) = p » (18

: ' 7.B=0 . an
: where

b 3 =0V + o + WB) . (18)
)

. D= ek , B =l . (19)

d Below, it will be demonstrated that Eqs. (14) -~ (19) are covariant against
the three-fold infinite number of possible Galilei transformations. For this

reason, Eqs. (14) - (19) are fundamental electromagnetic field equations, which

»

hold for all inertial frames of reference 2(;,t,;), in which the ether flows
with constant, but otherwise arbitrary velocity w20, In addition, Eqs. (14) -
(19) are approximately correct for inertial frames of reference Z(?,t,z(;,c)) in
which the ether flow field ;(;,t) is inhomogeneous, as long as the spatial and

temporal nonuniformities of w(r,t) have characteristic extensions |AT| in space

! and |At]| in time, which are large compared with the dimension and duration

5 of the electromagnetic process, respectively. The latter conditions are frequen-
¢ .

f tly satisfied since most experiments are restricted to spatial regions which are

‘- neglegibly small compared with the universe.
At interfaces between different media, boundary conditions for the electro-

magnetic field vectors are required. These are obtained by integrating Egs.

d

- (14) - (17) across the interface with normal vector m. If n points from medium
? "1" to medium "2" and [?l =2 ?2 - ?1, the boundary conditions in presence of

o - -

) ether flow w and interface motion v are:

X = [E] = @-0) (8] » (20)
: ax[H + wx (D + exB)] = -@-0) (D + cwxB] + T* y (1)

)

B ‘ -.J.\ \\ \}u’ ~.\;_\;‘}.




n-(Bl =0 . S (23)

where ?* is the surface current density and p* is the surface charge density.
In the derivation of Eqs. (20) and (21), the relations w-UB = -VX(SXE) and
;-V[ﬁ + sgxg) - p; = -VX{$X(3 + e;XE)}, both for constant ;, were used. The inter-
action of the ether with the interface is negligible, hence [;] =0. In general,
the interfaces separate regions of space in which both ¢, u, and 5 are different,
and the interface moves with a velocity field 3(?,:) 2 0.

The derivation of the generalized electromagnetic field equations (14) - (17)
has been carried through in the MKS system for physical reasons. In comparison
to the cgs system (E and H same units), the Giorgian system is superior since
(1) it introduces éharge as a separate independent unit and (ii) it permits to
treat charge as an invariant not only for Lorentz but for all Kottler-Cartan-
Dantzig-Post type space-time transformations [Post 1972, 1979] including the
Galilei transformation. The invariance of charge "e" is related to the invari-

/2 02,11
since c, " me /eoh

ance of the characteristic speed of light c, = (uos:o)-1
for dimensional reasons (no mass dependence, mo = 1). This fundamental relation
appears to indicate that electromagnetic wave propagation involves quantum-
mechanical interactions (h = Planck constant) of charges e associated with the

ether medium (eo,uo).

.
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GALILEI COVARIANCE OF ELECTROMAGMETIC FIELD EQUATIONS

The laws of nature are of the same form in all inettial frames [Einstein, 1916].
In view of the derivation of the electromagnetic field equations (14) - (19) with i
ether flow; they should be covariant against Galilei transformations. The rela-

tions for the Galilei transformation of the independent variables and the

TR L s ek a8

dependent fields from the inertial frame Z(?,t,;) to the inertial frame ['(f',t\w') ,
which moves with the constant, but otherwise arbitrary velocity % relative to Z,

are given by (0 and 0' of } and 2' coincide for t = t' = 0, Fig. 2):

¥ =¥ -l , t' = ¢ . (20)

{ a/3t = 3/at’ - w-y' , vsy' , (25)

3}

i and

; t=E - WwxB , %=1 y  (26)

y 3,'5| +p'-l§. , p = -, 27 |
V=V + 1 , w o=wtu , (28)

3 where )

: g =¢' w=uyu' o =g' . (29)

Substitution of Eqs. (24) - (29) into Eqs. (14) - (19) results in the electro- ;

magnetic field equations for the inertial frame z'(;', t', w') with ether flow w':

v'x(E' + wixB') = -(3/3¢t' + w'-V)B’ ,  (30)
' U = +/0t + WU B F B + T - o , (3D
) v'e@d + e w'xB) = p! R (32)

0B - . ) g
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where

o= oV ot @+ VB .o (36)
=B, B o= u'H . (35)

The Eqs. (30) - (35) for the inertial frame }'(r',t',w') are indeed of the same
form as the Eqs. (14) -~ (19) for the inertial frame 2(;,t,;). Thus, the Galilei
covariance of the proposed electromagnetic field equations (14) - (19) with
ether flow w is demonstrated.f This covariance is the necessary condition for
Eqs. (14) - (19) to be generally valid.

It is remarkable that the Galilei transformations (26) of the fields E

and # are not symmetric. In view of Eq. (29), Eq. (22) can also be stated as
B =B cixB , =B . (36)

The analogous transformation formula for the magnetic field, B = §'+-u'aX3§ does
not render Eqs. (14) - (19) Galilei covariant. This relation is incompatible
because it implies magnetic charges, v-B 4 0, for which no experimental evi-

dence exists.

According to Eq. (16), an ether flow w transverse to the magnetic field E

induces an electric charge density P,
= ->
vBeo+o, p, = -V (cwB) . (37)
This interesting effect could, in principle, be used to detect the ether flow ;

through space charge measurements. Unfortunately, it appears that

2>

p, = ¢ we VX (38)

is very small for laboratory experiments (w < lOSm/sec. VXﬁ < IOIOA/mz) and

even for cosmic situations, e.g., for quasars (w g ¢, IxH < IO-AA/mZ).
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WAVE EQUATIONS FOR ELECTROMAGNETIC POTENTIALS

The basic Eqs. (14) - (19) represent a system of coupled partial‘differ-
ential equations of first order for the electromagnetic field‘E(?,t) and
\ i(;,t). With regard to mathematical applications, it is desirable to work with
R decoupled wave equations for the scalar potential @(;,t) and the vector poten-

tial'K(;,t). From these, the electromagnetic fields are derived as partial

derivatives,
2 = -vo -3k/ae B=wk . (39

Since an arbitrary vector field K(?,c) consists of a solenoidal and an irrota-
tional part, and v-A is still unspecified by Eq. (39), A is subject to the

"ether gauge"
vk = we@/ot + wv)(® - wk) ,  (40)

which reduces to the Lorentz gauge for w = 0. The relations in Eq. (39)

M
satisfy Eqs. (14) and (17) identically. Elimination of D =ct and B = uﬁ
. from Eqs. (15) and (16) by means of Eq. (39) yields, under consideration of
Eq. (40), the inhomogeneous wave equations for the vector potential X(?,t) and
the scalar potential W(;,t) = o(;,t) -‘3fx(;,t):
2
» e /ot + %02 - 21K =y - o) . D)
] 2 2
(ue(d/at + WD) - v°1(8 - ¥-K) = p/c . (42)
.
X where ue = c-z. These hyperbolic equations exhibit the convective influence

of the ether flow w on the electromagnetic potentials. Eqs. (41) and (42)
reduce to the conventional wave equations: for K(;,t) and 0(?,:) in the

special case of the Maxwell frame }° with resting ether, w = 5 [Stratton, 1941].
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The initial and boundary conditions for K(;,t) and ?(?,c) = ¢(;,c) -

.

3-3(?,:) follow from those for E(?,t) and 3(?,:) via Eq. (39). Thus, the °

-

solutions K(?,t) and W(?,t) of the wave equations (41) and (42) can be estab-
lished for known current and space charge distributions 3(?,t) and p(?,t). As
an example, we give the solutions of fundamental retarded potentials of

Eqs. (41) and (42), which are generated by the sources 3(;,t) and p(;,t):

A0 = & [ffrrHIEH erle) - B (B, e-r/e) 10 (43)

oG, 0) = 7= [ffR1a - Z—j)o(?*.c-n/c) + TR E* e-R/0) 1T (44)
where

R=/@ -2, RGIY = RGE',I) . (45)
is the distance b;tween the field point (T) and the source point (;*). By
Eqs. (43) and (44), the sources 3(?*,1) and p(?*,r) at the source point T* con-
tribute, at the retarded time T = t - R/c, to the fields K(;,t) and 0(?,:) at
the point T and time t of observation. Since R(;,;*) and ¢ = (ue).]‘/2 are
Galilei invariants by Eqs. (24) and (29), the time retardation At = - R/c is a
Galilei invariant as expected [At = At' by Eq. (24)].

The retarded potential solutions (43) and (44) refer to the inertial
frame Z(;,t,;), in which.the ether velocity is w # 0. They indicate that the
corresponding solutions for the Maxwell frame Z°(?°,t°,;°-3) are approximately
valid also for |w®| << c. However, for |W| » c, the effects of the ether

flow w on the potentials K(?,t) and o(?,:) are quantitatively significant.

Note that also the nature of the ¢(¥,t) solution changes with respect to its

->
sources as |w| increases from O towards c.
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The ether gauge (40) and the wave equations (41) and (42) are covariant

against the Galilei transformations (24) - (29). This covariance is obvious.from

the co -/ invariance of the operators and field expressions in Eqs. (40) - (42),

namely:

3/3t + w'¥ = 3/3t' + w'-¢!

X

ThHe unprimed and primed fields refer to the inertial frames

and Eq. (29).

Z(;,t;;) and ZY;',t';;'), respectively. Since the relative system velocity is

A =%-Ww =V -3 (Fig. 2), Eqs. (46), (48), and (49) imply the Galilei co-/

invariants

3/3t + vV =3/at + V9" , (51)

® - VA= - VA , (52)

T -ov=Fr-pryr . (53)

In terms of the electromagnetic fields, the Galilei invariants (47), (48), and

(52) assume by Eq. (39) the form [Stratton, 1941]1.

B =1

E+wd =t o+ Wl

T+ Bt + B
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By means of the invariants (46), (49), (50), and (53) - (56), the Galilei

covariance of the basic electromagnetic field equations (14) - (19) with
ether flow w is now immediately recognized.

In the special case w = 0, the new wave equations (41) and (42) with
ether flow combine to the relativistic wave equation [XA,1¢/c} = -u{J,ico}
with the Lorentz covariant operator C = V2 - c'zai. This D'Alembertian can,
in no way whatever, describe anisotropic light propagation or the nonreci-
procal asymmetry between the clockwise and counterclockwise beams observed
in the Sagnac experiment {Post, 1967]. Anisbtropy and nonreciprocity require
mixed space-time derivatives Viat in the wave equation [Post, 1967]. These

are generated by the ether convection w:V in the proposed wave equations (41)

2 _ c-z(at + ;'V)z. The space-~-

and (42) with the nonsymmetric operator Oa=v
time symmetry is‘destroyed by the ether flow 3, i.e., exists only in the

-
ether rest frame where w = 5.

--------




ELECTRODYNAMIC CONSERVATION THEOREMS

.

In the generalized electrodynamics with ether flow 3, charge, energy,
and momentum of the fields are conserved in all inertial frames Z(;,t,a) with
ether motion w. These conservation theorems are presented and shown to be

Galilei covariant.

Charge Conservation. The divergence of Eq. (15) yields, under consideration

of the vector identity for arbitrary fields Z(;.t),

v-[(3/3t + wv)a] = (3/3t + wV)V-a (57)

and Eq. (16), the conservation equation for the charge density in the inertial

frame §(T,t,w):
3/t + v = -9-F - ow)

This equation is Galilei covariant in view of Eqs. (46), (49), and (50).

Eq. (58) is equivalent to the usual charge continuity equation [Stratton, 1941j
p/at = 9§ (59)

Electromagnetic Energy Conservation. In accordance with the vector relations

for arbitrary fields ;(;.c) and 3(;,t),
v-(axB) = Bevxa - a-mxb (60)
3-(3/at + %-9)2 = (3/3t + weV)a/2 (61)

scalar multiplications of (1) Eq. (14) by fi and (11) Eq. (15) by (f + 3«3),
- and subtraction of the resulting equations (i) and (ii) - , results in the

conservation equation for the field energy in the inertial frame Z(;,t,z):
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- > 2

G/t + G-V)[?z-(?-: + wB)° + “Eﬁ J= <0 [(E + wxB)xh] - G - pw)-(E + ) .

(62)

This equation is Galilei covariant by Eqs. (46), (49), (54), and (55).
Equation (62) can be rewritten‘in the form

/3t + W)U, +U) = -v-F - q (63)
where

U, = %e (€ + _§x§)2 s (64)

1 52 '

U, = zuf ' _ . (65)

P = (E+ Bl ,  (66)

Q= J - oW (E + wB) . (67

are the electric and magnetic energy densities, the Poynting vector, and the
ohmic power density in presence of ether flow w. Note that Eqs. (64) - (67)
define generalized concepts for energy density, energy flux, and power density

of the electromagnetic field, which are Galilei invariant.

Electromagnetic Momentum Conservation. The generalized electric and magnetic

L d
stress tensors Te n in presence of ether flow w are introduced by means of the
1]

vector identity . .

(rxE)xa = v- Q3 - %22‘6') - Zv-a . (68)
which gives
e[ (E+wB) Ix(E + wxB) = V'¥e‘ e@E + =By (& + wB) . (69)
-1 - -1
Tt xB)xB = VT, - u By 8 , (70)
where
‘T’e -c@E + wd)E + W) - %e(‘é + )28 , (1)

"i"m R R S 'Y .
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The dyadics (71) and (72) are Galilei invariants by Eqs. (54) and (55).
Vectorial multiplications of (i) Eq. (14) by xe (E + wxB) and (ii) Eq. (15) . -

by X§, and addition of the resulting equations (i) and (ii), gives the conser-

- -
vation equation for the electromagnetic momentum in the inertial frame E(r,t,w):

(3/3t + w9) [ue (€ + wB)xli] = T, +T) -0 @E+wxB) - G- owB,  (73)
or

(3/3t + w-¥) (ueP) = \7-(‘?’e +?m) - »E - 3B . (74)

, These equations are Galilei cpvariant by Eqs. (46), (49), (50), (55), (71),
and (72). Equation (73) or (74) is a relation through which the forces on charge
p(;,t) and current 3(;,t) densities can be expressed by the electromagnetic fields i
E(;,t) and ﬁ(;,t) in the medium, which is assumed to be homogeneous with respect
to e, u, and 0. In particular, if the electromagnetic momentum change (at-fa'V)
(uef) is negligibie, the electromagnetic force density equals the divergence of
the field stress tensor, DE + }xﬁ = V-(T; +ﬁﬁ;) {Stratton, 1941].
Within the frame of the Galilei covariant electrodynmamics for inertial
systems Z(?,t,a)_with ether flow ;. generalized conservation theorems for energy '
[Eq. (67)] and momentuym [Eq. (73)] of the electr;magnetic field have been found.
These reduce exactly and approximately to the ordinary electromagnetic conser-
vation equations for ether velocities w =0 and |;| << ¢, respectively. Equa-
tions (67) and (73) predict significant physical effects for large ether veloci-
ties |W| + ¢, e.g., in th? vicinity of distant galaxies and quasars with extremely
large ether expansion drifts. A verification of the ether terms in Eqs. (67)
and (73) by means of laboratory experiments may be difficult, since macroscopic g

’ platforms can presently not be accelerated to speeds v > loam/sec.
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SIGNAL PROPAGATION IN SUBSTRATUM

According to the solutions of Maxwell's equations (1) - (6) for the
inertial frame of the resting ether w° = 5), light signals propagate with an

/2, which is independent of the velocity and

isotropic speed v; = ¢ = (ue)“1
acceleration of the source. . This independence from veloeity and acceleration

of the emitter holds also for signal propagation described by the Galilei co-
variant electromagnetic f;eld equations (14) -~ (19). However, the signal velocity

35 = ;s(;,;) is no longer isotropic in inertial frames 2(;,:,3) with ether flow

w % 0.

In order to understand signal propagation in the ether, consider the
elementary excitation of an electromagnetic wave pulse by the sudden application
of a current pulsq‘?*(t)[Alm] to the surface x = 0 of an ideal conductor (¢ + =)

at time t = 0,
J*() = {0,0,JH(®)} , x=0 , t>0 , (75)

where H(t) is the Heaviside step distribution, dH(t)/dt = §(t). The resulting
electromagnetic wave emitted from the "sheet antenna" at x = 0 at time t = 0 is

of the form (Fig. 3)
3 = {0,B(x,t),0} , E={0,0,E(x,t)} . (76)

The propagation of the wave (76) in the charge (p = 0) and current (3 = 0) free

space x > 0 with ether flow parallel to the wave propagation (Fig. 3)
->
w= {W“,0,0} ’ w" 20 ’ (77) t

is determined by the hyperbolic initial-boundary-value problem [derived from

Eqs. (14) - (17) and Eqs. (20) - (23)]:

y ".'~..'-".".'~.' PR HES
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(3/3t+w“8/3x)23 = czazB/ax2 , 0< X< R (78)
i . B(x,t=0) = 0 , 0< x< o , (79)

3B(x,t=0)/3t = 0 , 0< X< o , (80)
i . 2, 2.-1 4
P B(x=0,t) =u(l - w'/c) "§¥(e) , 0<tem . (81)
i‘ The Laplace transform method gives the solution of Eqs. (78) - (81) as the integral
\ functional
y atie )
B(x,t) = Ty F(s)ets_(x-w“t)S/cds (82)
¥ 2ni

S )

: where
s a+ieo _
; S/ FeeM/Og 1y - e e (83)
5 a-ie
. -
; by the boundary condition (81). The integral equation (83) for the Laplace
N amplitude F(s) has closed-form solutions for certain j*(t) functions, e.g.,
3 F(s) =u(l - wi/eh) ™l | < ¢ , (8%
‘: for the boundary value.(75). Equations (82) and (84) combine to the wave pulse
. solution:
) . 2, 2.-1 x
4 B(x,t) = u(l - w/c”) "JA(t - wll+c) , x>0 , (85)
1 with
: E(x,t) = =(w +o)u(l - w2/e®) e - =29, x>0 (86)
, ’ | i w“+c ’ ’
- by Eq. (14). Equations (85) and (86) follow from the discontinuous integral
C4
; [{Eqs. (82) and (84)],
o
\ ati= X=-w, t
S 2_1_ . lets-(x wyt)sle, . H(e - i ) (87)
s ni amie c
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ot

where

X-w t

i _ X . 3
P ) = H(t - - +C) ’ ‘w”‘ < ¢ . (88)

H(c_-

The results (85) and (86) are physically interesting in several respects.
As typical for hyperbolic equations or processes with finite characteristic speed

c < », the wave fields are discontinuous at the wave front (Fig. 3). The posi-

tion and speed of the signal front are in the inertial frame Z(x,y,z,t,ﬂl)
y g(t) = (ﬁl + ¢)t 2 ct , Wir 20 , (89)
| -
Vls w“ +c2¢ R L] 20 . (90)

Accordingly, the electromagnetic signal propagates with a velocity vl 2 ¢ depend-
ing on whether thé propagation occurs in (>) or oppcsit (<) to the direction of
the ether flow 3". Only in inertial frames moving with the ether, the signal

propagates with the velocity v; = ¢ in all directions, i.e., the Galilei invariant

c = (ue)-1/2

is the speed of 1light relative to the ether. Apparently, c repre-
> > >
; sents the upper limit for the ether velocity, [w| < c, since [B| » » and [E| + =
for |3| + ¢ by Eqs. (85) and (86). 1t is alsq:seen that for the electric and

magnetic field intensities of wave phenomena
] = |w +c|-1B] oy +el e, w =0 . (9D

This relation could possibly be used for the determination of the ether speed
. [w“[ through very accurate interferometric comparisons of the electric and magne-
tic amplitudes of waves.
In the same way, the initlal-boundary-value problems for signals propagat-
ing in directions perpendicular to the ether velocity w can be solved, with v: =
(cz - w2)1/2. Accordingly, electromagnetic signal propagation is anisotropic

vt v: in inertial frames with ether flow.
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\ ELECTROMAGNETIC INDUCTION IN SUBSTRATUM

As an elementary model for the generation of electromagnetic puls;s by
b induction in the ether, consider a plane copper slab (initially at x = 0), which
is accelerated at time t = 0 across a homogeneous magnetic fieldTSo = {O,BO,O}
to a velocity ; = {a(t),0,0}, so that the position of the front surface is at
x = a(t) at time t with a(t=0) = 0 (Fig. 4). The duration At of the (explosion
driven) piston motion is assumed to be small compared with the field diffusion
time ¢t = uod2 (slab thickness'd). The mocion»of the quasi-ideal conductor (g =)

D

across §° induces at its front surface an electromagnetic field of the form
k. B = {0,-3A(x,t)/3x,0} , £ = {0,0,-3A(x,t)/3t} (92)

which propagates imto the space x > a(t) of Fig. 4. Let the ether flow be
parallel to the direction of wave propagation, W = {WI’O’O}’ i 2 0. The vector
potential'ﬁ = {0,0,A(x,t)} is then determined by the hyperbolic initial-boundary-

value problem for the homogeneous wave equation (41):

: (3/at + ﬁlalax)zA = X%k, alt) < x<w . (93)
; A(x,t=0) = =B, x , 0<x<o . (94)
3A(x,t=0)/3t = 0 R 0<Xx<m R (95) {

' [3A(x,t)/at + a(t)aA(x,t)/ax] 0 , 0<tcecow . (96)

x=a(t) =

Equations (94) - (96) consider that B(x,t=0) = B,» E(x,t=0) = 0, and E(x,t) +
v(t)B(x,t) = 0 at the moving piston (¢ = ») surface x = a(t). The solution of

Eqs. (93) - (96) 1s by the Laplace transform method

Fafatadnr
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. adie
. A(x,t) = -B_x + 5%;- c(s)e"s‘(""‘*lt)S/cds (97)
a=iew :
9 where .
i p ot ts-{a(t)-w t]s/ \ a(t) -w
| 5;;-£-ﬁ” sG(s)etsT[a(e)wytls/ey | a(e)B /(1 - ) (98)

3 by the boundary condition (96). The integral equation (98) for the Laplace
amplitude G(s) has closed~form solutions for certain piston motions a(t), e.g.,
A for the Heaviside velocity pulse

Vo = ¥
c

X a(t) = v H(E) , G(s) = voBos-zl(l.- y o lwl<e o (99

From Eqs. (97) and (99) result, under consideration of Eq. (92), the solution

for the induced electromagnetic pulse fields:

. (1'+w" /¢) X x
Alx,t) = -Box + (1+wil /c-volc) voBo(t - “ +c)H(t - w +c) » X >Vt
= 0 s X < vot , (100)

,' volc »
" B(x,t) = Bo + (1'+w" /c-volc) BoH(t - v +c) » X >Vt
'; =0 s X < Vot (101)
N volc .
s E(x,t) = - A+w/e=-v, /c) (w) + IBH(E = 2= » X2 Vot

-0 yx<v e . (102)

Chea 3 ]

In the derivation of Eqs. (100) - (102), the discontinuous Laplace integrals

-

1 have been expressed as Heaviside impulse functions, in accordance with Eqs. (87)
. and (88).

3

k Equations (101) and (102) indicate that the electromagnetic wave pulse

< induced at the front surface x = vt of the conductor, which pushes the flux of
o

L]

->
the magnetic field Bo’ is discontinuous at the wave front £(t) = (w“ +c)t 2 ct

reld .f’ AN ‘ )\".!. "‘n‘ ".,. \‘ \}'P A-“A_-\
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. for 9 2 0, which propagates with the speed Vig'“l + ¢ Z ¢ for w, Z 0 in the

inertial frame E(X'Y-z’t’%|)° Figure 4 shows the induced- magnetic field pulsé

B(x,t) = B(x,t) - Bo, which occupies the space vt < x< (WI + ¢)t at time t.

Thus, the electromagnetic signal propagates with a speed vt 2 ¢ in the inertial

frame ) depending on whether the propagation occurs in (>) or opposite (<) to

- e wm e g W e

the direction of ether flow w. The electric and magnetic wave intensities are
interrelated by |E| = ,%I + c|+|Bl. Equations (101) and (102) indicate that for

ether drifts'§| opposite to the piston velocity ;o
M [B(x,t) - Bol > ® for Vo < Y e, W <0 . (103)

g [E(x,t)| +» = for v -w >c , w <O

o . (104)

~ Accordingly, copid;s amounts of radiation would be produced by magnetic flux (BO)
) pushers in regions of space with large ether drifts 1071 < IWII < ¢ (distant
galaxies, quasars). On principle, even the limit Vo T < ¢ 1s achievable if
v deviates from ¢ by not more than the conductor speed vy It is remarkable

that the limit Vo = % = ¢ is not even approximately realizable in absence of

ether flow (ﬂl = 0) since Yo << ¢ for macroscopic bodies.

WLV,
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DISPéRSION AND FREQUENCY SHIFT IN SUBSTRATLM

In a homogeneous dielectric (e,u) or the free ether space (so,uo) of the
Maxwell frame 2°(?°,t°,;° =‘3) in which the ether is at rest, the frequency and
wavelength of electromagnetic waves are interrelated by w = |k|c where |k| = 2n/x.
In an inertial frame 2(?,:,3) with ether flow w, the dispersion of monochromatic

waves of frequency w
. -,
A G = Rexkel(ﬁ' Frat) (105)

in absence of space charges (p = 0) and electric currents (} = 0) is determined

by the homogeneous wave equation (41) for the vector potential with ether flow v,

(3/at + w)2A = 292k . (106)

Substitution of Eq. (105) into Eq. (106) yields, since Kk # 0 (condition for
nontrivial solution), the dispersion equation w = w(ﬁ) for electromagnetic waves

in the ether:

w=[kle +kew , c = (m:)-ll2 . (107)

Thus, in presence of ether flow ;, electromagnetic waves exhibit in the inertial

frame Z a frequency shift .

Aw=kw20 , cos(k,w) 20 ,  (108)

which vanishes for propagation i perpendicular to the ether flow‘;. Equation (108)
predicts a red-shift (dw < 0) or a blue— shift (8w > 0) for electromagnetic waves

-
propagating with a wave vector component HI which is antiparallel or parallel to
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the ether velocity 3. The physical reason for this frequency shift is the propa-

gation of waves and signals with the phase velocity .

V.

p =t &0k . (109)

in the inertial frame Z, i.e., the propagation of electromagnetic waves with the
velocity c relative to the moving ether. For laboratory and terrestrial applica-

tions, the frequency shift is in general small
L
|dw] <cw for |w| << ¢ . . (110)

The red-shifts of spectral lines observed in distant galaxies have

been the subject of different explanations, with the Doppler red-shift due

i, R

to the rapid recession of the galaxies [Humason, 1956]) being now

widely accepted. - The longitudinal Doppler red-shift Awj = -Iil-lqu

;Q is the velocity of the light source (galaxy), is of the same order-of-magnitude

, Where

as the longitudinal ether red-shift from Eq. (108), Aw = -|%|:|w|, if w = vor
}

Since the ether probably "expands" as the masses of the universe recede (relative

N to theearth), both the Doppler and ether red-shifts have to be considered in the
- evaluation of the velocity VQ % w of the galal.ies from the experimental red-shift
30

data”™ cAA/A. These indicate ether drift velocities w -~ lo-lc to AXIO_lc [Humason, 1956 ]
The ether red-shift represents, therefore, another physical effec; for the
\ experimental investigationof the substratum,
The presented applications provide an impression of the electromagnetic
phenomena which can be expected in presence of ether flow. The theory has signif-

icant other applications in connection with the interaction of radiation and

charged particles with the ether under laboratory conditions.

e
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- GALILEAN AND MEASURED COORDINATES

-

The generalized electromaznetic field equations (14)-(19) with substra-

tum and their Galilel transformation (24)-(28) represent a field theory in terms

L e Y s o w

of absolute or Galilean space r = (x,y,z) and time t coordinates, i.e., the Gal-

ilean coordinate differences are the same in all inertial frames, AT = inv and

ey

At = inv. According to Lorentz [1909], a measuring rod resting parallel to the ether

e i

velocity w in an inertial frame Y(r,t,;) has there the reduced length L(w) =
Lo(l - 327¢2)V 2 que to the flattening of its microscopic Coulomb fields

by the ether flow (Lo = proper rod length in the ether rest frame

- m a8t

Xo). Recognizing that a clock can be visualized as a system reflecting a

- light signal back and forth between two mirrors held apart by a rod, Builder
[1958 a,b ] demonstrated that the period of a clock is increased to T(;) =

. To/(1 - ;Z/CZ)I/Z in the inertial frame f(r,t,;) with ether flow ;, as the

By combined result of.the rod contraction and the anisotropy of light propagation

between the mirrors (T, = proper clock period in the ether rest frame

Xo). For these physical reasons, the differences A of the absolute Galilean

L A

coordinates r,t of the inertial frame Z(r,t,;) are related to the méasured (m)
space and time coordinate differences in this reference frame by (1 and L to w)

+ > +L

»/
Ar_ = yAr' , Ar = A, Atm-At/Y »  (111)
where
i y-(1-$2/c2)1/2 , 0<|w|<e . (112)
4
.: The measured coordinates ?& and tgy vary in accordance with the 7(3) of the
’ respective inertial frame Z. For mathematical (y" { ®») and physical (violation

< of causality principle) reasons, the ether speeds are restricted to values

0 < |31 < ¢ (in agreement with observation). Since the scaling factor y(;) is a

constant for a given inertial frame X(r,t,g), the calculation of the measured
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(m) coerdinates from the Galilean coordinates, and vice versa, by means of
Eqs. (111) - (112) is elementary in applicationms. i .
In order to illustrat2 the use of the Galilean space and time coordi-
nates, the Doppler effect shali be analyzed (within the frame of the presented
theory) for an emitter A and a receiver B, which move along the x-axis with
the velocities u 2 0 and v 2 0 relative to the ether frame Zo, respectively.

The Galilean position coordinates of A and B are at the absolute time t > 0

of the ether frame zo

xA(t) =.a + ut , xB(t) =b + vt , (113)

where a and b are the initial positions. The Galilean time t is counted by
similar (synchronized) clocks, distributed over the ether frame Zo (isotropic
light propagation). The time periods of the emitter and receiver shall be the

game, T, =T = TB’ when A and B are at rest in zo' Let A emit signals with

A
period TA at the times

tn = to + nTA , n=0,1,2, - - -+, (114)

At a time t > tn’ the n~th signal emitted by A reaches the location on the

x~axis

xn(t) = xA(tn) + c(t - tn) = a3~ (¢ - u)tn + ct. (115)

Accordingly, the n-th signal of the emitter A will hit the receiver B at a

* =tR) = =tk
time tX determined by xn(t tn) xB(t tn), or

a-~-(c-~ u)tn + ct: = b + vt; . (116)
Hence

t:' - tz + nTx y D = 0,1,2, - - -, (117)

L - .
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where
] th= e+ (b-a)le-v) , .(118)°
TX = TA(c ~u)/(c - v) . (119)

Equation (119) indicates that the period T, of the emitter A is "observed" as
a period TK at the location of the receiver B. So far, the considerations
have been purely 'classical" or "Galilean."
In experiments, one compares the period Ti (measured at B) of the receiver
B with the period TXm (measured at B, too) of the emitter A. According to Egs.

(111) and (112)

TH = TH/ (L - wreH/2 | T, =Tg/ (L - v2jc3y1/2 (120)

since A moves with the volocity u and B moves with the velocity v relative to

. the ether, Zo. By Eqs. (119) -~ (120), the measured period ratio is (TA = TB)
T, /T* = [(c + u)(c - v)/(c - u)(c + v)]1/? (121)

! Bm’ "Am °

Fl

» If the relativistic relative velocity V of the mbving points A(u) and B(v) is

' introduced, Eq. (121) assumes the form

‘ T, /T% = [(c + V) /(c - V]2 (122)

. Bm’ "Am

’; where )

: Ve (u-v/Q-uwicd . (123)

Since the measured Doppler frequencies are defined by va = 1/TKm and Vem =

1/-1-B , Eq. (122) formally agrees with the Doppler effect of the special rela-
m

- - e -

.tivity theory [Whittaker, 1951; Stratton, 1941)

h vi o= v [(c + V(e - nit/? . (124)

. A AT A T
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- Thus, v:m 2 VBm for V 2 0, depending on whether the emitter A moves towards .
(u > v) or away from (u < v) the moving receiver B. If A and B have the samé
velocity, no Doppler effect occurs, va = Vam for u=vor V=0,

It is remarkable that the absolute velocities u of A and v of B rela-
tive to the ether frame Zo cannot be determined by Doppler measurements. The

: measured frequency ratio Vzm/vBm gives via Eq. (124) only the relative rela-

tivistic velocity V, since Eq. (123) provides a manifold of solutions (u,v)

: for any measured value V.

As another illustration of the GalileaA relativity physics, it is
recalled that the Galilean ideas for anisotropic light propagation parallel

() and perpendicular (1) to the ether velocity w yield for the fringe shift

A = At of the Michelson-Morley [1887) experiment.

ae = /oIt @ - w2t ot - Wiy (125)

N According to Eqs. (111) and (112Z), the phase difference vanishes exactly since
fi

the mirror distance L' is Lorentz contracted whereas the mirror distance KL is

not Lorentz contracted,

At = 0 for ﬂl

LRS- L it

weht2 ool ay (126)

=LQ- o

" The experimental result At = 0 lead Lorentz via Eq. (125) to the discovery of
the physical length contraction of material bodies moving relative to the ether

with a velocity .

45 A

Thus, it is recognized that the Galilean concepts of space and time,
extended with the help of the length contraction of Lorentz and the time dila-
tation of Builder, explain the Michelson-Morley type interferometer and also

. Doppler effect measurements, i.e., even their most recent and highly accurate

versions [Jaseja et al., 1964; Vessot and Levine, 1979].
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The Michelson-Morley maser interference experiment of Jaseja et.al [196%]
agrees with Eq. (126) up to terms of order 10-3(v0/c)2 where v is the orbital
velocity of the earth relative to the ether. The maser Doppler measurements
of Vessot etal [1972]}are inexcéllentaccord with Eq. (124) since these permit
to infer an anisotropy of light propagation which is only of the order ac/c
< 10-8. These investigators believe that the observed, small effects are

explainable bymeans of the general theory of relativity. The latter possibility

cannot be discussed here.
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CONCLUSION

The original Maxwell's equations for the ether rest frame are generali;ed
to electromagnetic field equations for arbitrary inertial frames, in which the
ether is in a state of motion, w # 0. In connection with this theory, we
arrive at the following deductions.

The electromagnetic field equations with ether flow W are Galilei covariant,
and reduce to the Maxwell equations in the limit w/c » 0. Thus, Maxwell's conjec-
ture that his equations hold in a frame of reference with resting ether is recon-
firmed. Maxwell's equations are not Galilei éovariant, since they do not refer
to an arbitrary inertial frame with moving ether, w +0.

Electromagnetic sixnals propagate isotropically with the speed of light

-1/2

c = (ue) relative to the (moving or resting) ether. Relative to inertial

frames with ether flow 3, electromagnetic signals propagate anisctropically.
The signal velocity is independent of the dynamics of the emitting source, which
is typical for wave propagation in a carrier (ether).

In inertial frames with ether flow, the dispersion y = u(ﬁ) of electro-~
magnetic waves is changed, i.e., an electromagnetic wave of wave vector k experi-
ences a blue ~ or red - shift Aw = kw=0 fsr propagation with a wave vector
component E| parallel (>) or antiparallel (<) to the ether veloc%ty w. In electro-
magnetic wave phenomena, the ratio of electrié and magnetic field strengths
[E|/|B] = ¢ + % 2 c, is increased by the ether flow depending on whether w =
-w/|k| =2 0.

The electromagnetic ether has been incorrectly linked with an "absolute
rest system’” since Maxwell [Whittaker, 1909]. The substratum is a physical con-

cept [Ives, 1952; Kaempffer, 1953] whereas absolute rest is a methaphysical con-

cept, and these should, therefore, not be intermixed. Within the presented

theory, we have only assumed that the ether has different drift velocities ;
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in different inertial frames, and that the Galilean relativity principle is

.

valid [Mansouri and Sexl, 1977].

The electromagnetic field equations (14) - (19) with substratum flow w and
their Galilei transformations ;epresent a field theory in terms of absolute
space ; = (X,y,2) and time t coordinates. The transformations (111) - (112)
indicate how these are related to the measured space and time coordinates as a
result of length contraction and time dilatation determined by the Lorentz
measure v = (1 ~ ;2/C2)1/2. As shown, our theory is in agreement with the
Michelson-Morley ana Doppler effect experimeﬁts.

The infamous difficulties of the Lorentz covariant and ether-free special
theory of relativity (applicability to point particles only, violation of cau-
sality principle'for extended particles, infinite self-energy and self-acceler-

ation of electr&ns, infinite zero-point energy density of vacuum, twin paradox,
etc) are removed by adopting a covariance principle combatible with an electro-
magnetic ether. The abandonment of Lorentz covariance permits the-existence of
extended particles and, thus, eleminates infinite self-energy and self-acceler-
ation of the relativistic point particle. The introduction of the ether and a
minimum length in quantum electrodynamics gives a finite zero-point energy densi-
ty of the vacuum [Winterberg, 1984]. Only that twin, who moves rglative to the
ether, experiences an increased life time, eté.

In addition, the presented theory justufies the widespread use of non-
relativistic electrodynamics for the analysis of moving conductors in electrical
engineering, magnetohydrodynamics, and plasma physics [Stratton, 1941; Wilhelm,
1983,1984]. We have considered here only the transformation of Maxwell's

equations to inertial frames. The theoretical foundations for transforming

Maxwell's equations to accelerated reference frames have been laid by Kottler
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{1922 a,b], Cartan [1924], van Dantzig [1934], Shouten and Hantjes [1934], and
in particular Post [1962, 1967, 1972, 1979]. Electromagnetic ether effects in
rotating systems are imporﬁanc for Sagnac interferometers and ring lasers,
electromagnetic sensing of absolute rotation, and Sagnac type gyroscopes for

navigation, as will be shown in further communications.
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CAPTIO:S :

~0 . . -
Galilei transformation from inertial frame  (r°t°w°’=0) with
resting substratum to an inertial frame (r,t.w) with streaming

- -> ~0 . .
substratum w = -u, where V moves relative to ° with velocitv u

(0° = 0 for t° = t = 0).

Galilei transformation from inertial frame ;(;,t,;) to inertial

frame X'(;',t'.a'), where Z' moves relative to ? with velocity u

(0=0' fort =¢t' = ().

Magnetic ‘field pulse B(x,t) (in substratum flow 3) with wave front
-P* ->
at x = (w" + c)t produced by switching on a current j (t) = JH(t)

on the surface x = 0 of a conductor 0.

Magnetic field pulse B(x,t) (in substratum flow W) with wave front
at x = (w“ + ¢)t produced by the motion ;(t) -3°H(t) of a conducting

piston 0 transverse to a magnetic field Eo into the space x 2 0.
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Fig. 1: Galilei transformation from inertial frame Z' (¥%,t%u°=0) with

resting substratum to an inertial frame ):(;,t.z) with streaming

subgstratum ; - -;, where Z moves relative to Z' with velocity '5

(0° = 0 for t* = ¢ = (),

Y \
s . [
P - - - - - = - - - - .
w W'ew-~u
W = e - - - - - e - = - -
W o wm o = = e e - o > - -
Ut
_:—,:ﬁ —— 3
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2 2z’
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Fig. 2: Galilei transformation from inertial frame Y(r,t,w) to inertial

frame Z'(?'.t',;'), where Z' moves relative to Z with velocity u

(0=0' fort = t' = 0).
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Fig. 3: Magnetic field pulse B(x,t) (in substratum flow -\;) with wave front

at x = (w“ + c)t produced by switching on a current I*(t) 'jﬂ(t)

on the surface x = 0 of a conductor o.

Fig. 4: Magnetic field pulse B(x,t) (in substratum flow ;) with wave front

at x = (w" + c)t produced by the motion '\;(t) -3011(:) of a conducting

piston 0 transverse to a magnetic field 30 into the space x 2 0.
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